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Abstract

The proposed goal of this project was to be
able to adapt the grasp shape of a robotic hand,
based on previous experience, to produce a more
stable and dexterous grasp. Following this goal,
we looked for different ways a robotic hand could
build upon its previous grasping experience.

We explored the idea of employing the adap-
tive grasping algorithms of Humberston and Pai
[1], but we found some limitations to implement-
ing this work on the Barrett robotic arm and
hand. Instead, we opted to try to classify or
recognize the object being grasped using mod-
ern statistical techniques. We were able to train
a neural network to recognize objects in both
training and test data sets with a high degree
of accuracy (in some cases over 99%). However,
when these grasps were repeated on the robot,
we were unable to obtain any kind of reliable
recognition. The reasons for this may be due to
a variety of factors which will be discussed in the
following paper.

We conclude that the idea of using high-level
knowledge about an object to choose strategies
for grasping is justified and realizable. However,
using neural networks as a tool for encoding this
knowledge may not be viable.

I Introduction

When humans perform simple grasping task
in every day life, they depend on a combina-
tion of their visual system as well as their sen-
sorimotor memory. Hereby, the human hand
relies on about 17000 mechanoreceptive tactile
units [2] embedded in the hairless skin of the
palm that are able to give feedback in response
to e.g. touch, pressure or vibrations, constantly
adapting fingertip forces and grasping strength.
Lifting up an object, such as a cup or a pen,
is consequently followed by a cascade of sensory
signal generation and processing [3].

In humans, visual information of the objects
properties during grasping is important, how-
ever not essential [4]. Consequently, a lot of
research effort has been put into tactile-driven
approaches for robotic grasp control [5] [6]. The
main challenge remains yet to find a dexterous
robotic grasping technique that can cope with
the wide range of different grasping contexts. In
other words, to mimic natural human grasping
behavior as accurately as possible.

Conventionally, there are two approaches to
developing grasping strategies and algorithms.
While the first one uses geometric object mod-
els, i.e. calculates a geometry-based, object-
specific optimal hand posture, the second ap-
proach solely depends on tactile feedback upon
contact with the object being grasped. Both
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approaches have the drawback that each grasp
will be performed independently of the previous
grasp experience. In contrast to this, humans
use previous grasping information to preshape
their grasp. (The simple example of a person
lying in bed at night and reaching for a glass of
water as opposed to a phone or a book illustrates
this.) Accordingly, more recent ideas integrate
some kind of grasp experience into the planning
of the subsequent grasp [7] [8].

Grasp Preshaping

The main idea of grasp adaptation is to use
previously acquired grasping knowledge to im-
prove future grasping strategies. One possi-
ble method we proposed was to try to equalize
time-to-contact across all fingers, based on pre-
vious grasp shapes. This idea was inspired by
the adaptive grasping algorithms of Humberston
and Pai [1]. However, in the course of the project
we found many limitations to adapting this spe-
cific algorithm to the Barrett robotic arm and
hand.

As the Barrett Hand is equipped with 1-DOF
finger joints, preliminary preshaped grasps were
very similar. Most of the grasping action is gov-
erned by the automatic TorqueSwitch™ mecha-
nism in each finger [10]. Also, since the objects
being grasped were not fixed to the pedestal, the
hand had the tendency to push them around un-
til all three fingers were making contact simul-
taneously.

In addition to the problems inherent in the
hardware, we faced temporary technical difficul-
ties with respect to the torque sensor data collec-
tion. As the torque sensor readouts would have
been crucial in identifying the different times of
contact for each finger, we finally discarded the
idea of preshaping the Barrett Hand.

Object Recognition

Our other main interest was in how the prop-
erties of the object being grasped would influ-
ence the sensor output. The Barrett Hand is
equipped with a rich set of sensors which cover
three different modalities. This is analogous to
the mechanoreceptors of the human fingertips,
which themselves cover at least three different
modalities: strain, vibration, and rate of change
[2]. In our case, the modalities are mass (given
by the force torque sensor), geometric shape (in-
ferred from finger joint positions), and pliancy
(given by tactile pressure sensors). We expect
that the combination of three such orthogonal
modalities will constitute a fairly unique descrip-
tion of an object.

Given such compelling sensor feedback,
would the system be able to recognize an object
from a predefined trained set? We ultimately
opted to bring statistical classification to bear
on this question. This approach is motivated by
the idea that once the system has more high-
level information about the type of object it is
sensing, it can employ grasps/strategies suited
to that particular type of object. A key part of
using previous experiences is being able to sort
and categorize those experiences.

II Methods

System Overview

The system consists of the 7-DOF Barrett
WAM robot arm and 4-DOF Barrett BH-280
Hand from Barrett Technology, Inc (compare fig-
ure 1). The robot is equipped with one 6-DOF
wrist torque sensor, three 1-DOF finger joint
torque sensors, and four 24-DOF tactile pressure
sensors, making for a total of 105 independent
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sensor inputs. Given such rich sensory input,
we hoped to obtain feature vectors which ex-
hibit statistically significant differences between
different grasp shapes. All the sensors read at
125 Hz. Most afferent inputs in humans run at
less than 60 Hz, so this rate is sufficient to mimic
physiological driven grasping approaches [9].

Figure 1 7-DOF Barrett WAM robot arm
and 4-DOF Barrett BH-280 Hand from Barrett
Technology, Inc.

Software Architecture

The software for running our experiments on
the Barrett WAM and Hand is a menu-based
command-line program that makes it easy to
record sensor data and test out differently
trained neural networks. The hand’s home
position as well as the initial grasp positions are
predefined and can be called individually. On
the main operational level, the menu lets the
user choose one of 5 different grasp types:

Top-down Prismatic Precision

Top-down Tripod Precision

Side-on Heavy Wrap
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Side-on Power Grip as well as
Side-on Prismatic Precision

Thus, each grasp is a combination of two
factors: the position of the hand and the
position of the fingers. The position of the
hand, referred to as the "target position", can
be either from the side (side-on) or from above
(top-down). The position of fingers 1 and 2 can
be at 0

� (prism), 30� (tripod), or 180

� (wrap).
When the user chooses one of the above grasps,
the robot follows a fixed sequence of states:

First Move to preparatory position.

Second Prepare (preshape) the hand for the
particular grasp type (prism, tripod, or
wrap).

Third Move to the target position (side-on or
top-down).

Fourth Close the hand on the object.

Fifth Lift the object briefly and return it to the
pedestal.

Sixth Release the object and retreat to the
preparatory position.

During steps 3-5, the following sensors are
recorded and logged to disk:

• WAM joint positions

• Finger joint positions (outer link)

• Finger torques

• 3D wrist forces

• Palm and finger tactile pressures

The software is structured such that all menu
options are executed asynchronously. The user
always retains control and can cancel the cur-
rent sequence at any time. Over time work-
ing with the robot we also found it necessary to
add various facilities for identifying the name of
the object currently being grasped, resetting the
hand/WAM if they have controller issues, and
recording a failed grasp. We use these annota-
tions to sort and label our sensor data samples.

Data Collection

The objects grasped varied in shape, size, sym-
metry, texture, weight, pliancy, and firmness.
For details see Figure 2. Each object was
grasped several times with 3 (if possible) differ-
ent grip strategies (Top-down Prismatic Preci-
sion, Heavy Wrap, and Power Grip).

Data from many trials of grasping these ob-
jects were collected into log files. These files were
then imported into Matlab and sorted by ob-
ject and grasp type. From these files, we took
only the interval during which the object was
being grasped.

The finger joint positions were used to de-
termine the time interval for sensor sampling.
Initially, the finger torques were used for this
purpose, but later in the project we encountered
technical difficulties in communicating with the
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Figure 2 Set of grasped objects on which clas-
sification was performed. (1) styrofoam ball, (2)
soft foam, (3) styrofoam cone, (4) foam square,
(5) wood block, (6) plush octopus, (7) foam but-
terfly, (8) packaging tape, (9) rattan ball, (10)
cookie cutter, (11) wooden egg, (12) football,
(13) foam star, (14) drinking bottle, (15) cube,
and (16) bean bag.

strain gages, and this method had to be altered.
Luckily, the joint position data proved sufficient.
As the two positional changes (i.e. the maximum
and minimum of the derivative) mark start and
end time point of each grasp, the specific time
stamps for each trial could be calculated and
used to find only the relevant data set for the
neural network analysis. Subsequently, each ob-
ject was assigned a label to run a classification.

Neural Network

To classify a grasp, the sensor data were nor-
malized and used to train a three layer neural
network. We read a total of 103 sensor values,
and classified among 16 possible objects. Ad-
ditionally, we formed a class ‘Failed Grasp’ to
which we assigned all failed grasps independent
of the object, making for a total of 17 classes.

Therefore, the neural network consists of a

103 node input layer, a 25 node hidden layer,
and a 17 node output layer. The implementation
was largely based on the one found in Andrew
Ng’s Machine Learning course [12]. Since this
single hidden layer with 25 nodes was enough to
perform robust character recognition in [12], it
was deemed a satisfactory configuration for our
purpose as well. Figure 3 depicts the nodes in
the three layers of the neural network.

After the first round of experiments, we used
the labeled data we collected to train a sepa-
rate neural network for each of the three chosen
grasps. All 103 features were separately normal-
ized before training. For each sensor i, the col-
umn vector vi of all samples becomes

vi =
vi �mean(vi)

std(vi)

Neural networks were trained using a cost
function J(⇥) similar to K regularized logistic
regressions, where K is the number of classes,
17. We also added a regularization term with an
adjustible weight �. The training algorithm iter-
atively finds the parameters ⇥ which minimize
the cost function J(⇥) by computing the cost
function gradient @J(⇥)

@⇥ in the neural network at
each step over all training examples. For full
details of the algorithm, see [12].

We produced a variety of different networks
with different regularization weights from � = 1

to � = 1000. 20% of the collected time points
from each grasp were set aside as a test set to
verify our results.

At this point a module was added to
the software which predicted the object being
grasped, given one or more samples of the above
sensor data. The final version of the soft-
ware printed out the name of the object which
it “sensed”, while lifting the object from the
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Figure 3 A three layer neural network for
the classification of grasped objects from fin-
ger pose, wrist force, and tactile pressure data.
Taken from Programming Exercise 4 in [11].

pedestal. This was implemented by taking a
single time slice of sensor data while grasping
an object, and feeding it forward through each
layer of the neural network. In each layer,

a(i+1)

= sigmoid

�⇥
e a(i)

⇤
⇥

(i)
�

where a(1) 2 Rm x 103

= the sensor samples

a(i) = output of layer i

⇥

(i)
= parameters of layer i

e = column of all ones

sigmoid(z) =
1

1 + e

�z

The final prediction is taken as the label
which was assigned the maximum probability by
the output layer:

object = index of max(a(3))

III Results

Sensor Data

The output data of the various sensors may in-
dicate different modalities of the object being
grasped. While the force torque sensor will react
strongly to the weight of the object, the finger
joint positions are more sensitive to the shape.
Orthogonal to either of these, the tactile pres-
sure sensors will give information of the object’s
compliance.

If we had obtained finger torque mea-
surements, these would have additionally con-
tributed to our picture of both the shape and
the compliance of the object. Unfortunately, the
data recording of the finger strain gages caused
major technical difficulties so that it could not
be done consistently. This was a severe setback,
as the finger torques are the most sensitive mea-
sure to initial contact with the object. Not only
did this halt our plans for a grasp preshaping al-
gorithm, it also forced us to reprogram part of
our data collection method.

Still, the remaining sensors give us quite a
full and diverse description of an object. Let us
discuss the finger positions. Figure 4 shows the
joint position profile while grasping the cone un-
der each of the respective grasp types. The posi-
tional change is recorded in radians over the time
span of the grasp. If we examine these graphs
we can gain insight into the nature of both the
grip and the object being grip.

Once the grasp is initiated, the position of
each joint increases steadily until the object is
fully enclosed in the hand. The joints remain
at this maximal position until the object is re-
leased. The most interesting grip in this scenario
is the top-down prismatic, where the hand grips
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the rather thin top of the cone. As the physi-
cal gap between fingers 1 and 2 is larger than
the upper circumference of the cone, we can see
that finger 1 fails to make full contact and thus
moves further than finger 2. As opposed to this,
in the side-on grips the fingers just wrap around
the base of the cone, thereby only showing small
positional variations. These differing scenarios
play themselves out clearly in the sensor data.

(a) Top-down Prismatic Precision

(b) Side-on Heavy Wrap

(c) Side-on Power Grip

Figure 4 Finger joint position in radians ver-
sus time for the (a) Prismatic Precision Grasp,
the (b) Heavy Wrap, and the (c) Power Grip.

We were especially interested in the output
of the tactile pressure sensors. The three Bar-
rett fingers as well as the palm are provided with
a tactile sensor array, consisting of 24 pressure
sensors. The sensors are arranged in an 8x3 ar-
ray. In the following, the sensor cell will be ref-
erenced according to the enumeration given in
figure 5. Note: the distal finger tip is always de-
picted at the top of the map, while the bottom
cells represent the proximal end of the finger tip.

Figure 5 Sensor arrays in finger tips and palm
with 24 sensors each.

For each cell the mean pressure value during
grasping was calculated for the respective fin-
ger/palm. We then compared different charac-
teristics of the material to see which showed the
most prominent feature in the pressure maps.
Pressure values were recorded in N

cm2 . First, we
compared the object’s shape. Figure 6 shows
two objects of similar weight: an upright square
wood block (object 5) and a round water bottle
(object 14 ), gripped with the Heavy Wrap.

The first observation is that for both ob-
jects, cells 1 and 4 in finger 1 show signifi-
cantly higher pressures than all other cells. This
was consistent through all measurements, grips,
and objects of that specific data collection. We
therefore conclude that something was block-
ing/triggering these cells leading to faulty data
output. Consequently, we did not use these cells
to train the neural network.
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(a) Side-on Heavy Wrap grip of square wood block (object 5)

(b) Side-on Heavy Wrap grip of round water bottle (object 14)

Figure 6 Pressure maps of fingers 1-3 and palm of Barrett hand. Pressures are recorded in N
cm2 and

plotted as a mean over the grasping trial for each respective cells. The Side-on Heavy Wrap compared for
a square and round object.
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The pressure profiles differ slightly, mainly
for the palm and for finger 1. As the object
is being grasped from the side-on, the fingers
wrap around it tightly. Accordingly, pressure
sensors 7-18 are most prominent. Interestingly,
the pressure is higher on the finger side than in
the middle, which is most likely due to the bulky
(rather square) shape of the Barrett Hand.

Even though the pressure maps show some
distinctive features, the difference is not as strik-
ing as one might expect. However, unlike the
human finger, the Barrett finger only has two
phalanges, therefore it is not able to bend at the
distal interphalangeal joint [3]. The sensor array
will therefore only touch one side of the wood log
or the bottle, respectively, making it insensitive
to the object’s shape.

Next, we compared the pressure profiles of
two objects of the same shape, but different
weight, surface structure, and slightly different
size (compare figure 7). The two balls (rattan
ball styrofoam ball) were gripped from top-down
with the prismatic precision grasp. Again, sen-
sors 1 and 4 showed faulty pressure data and
were ignored. Unfortunately, sensor 3 of finger
1 also began to give unreasonable high feedback
in the course of the data collection and was thus
ignored.

Again, the pressure maps show similar fea-
tures. Most of the feedback is observed for the
cells (7-18) in the middle of the finger. The pres-
sure in J3 is slightly higher as finger 3 has to
compensate for the two fingers (J1 and J2) grip-
ping from the opposite site.

It is interesting that the pressures while grip-
ping the lighter styrofoam ball are slightly higher
than the respective pressures while grasping the
rattan ball. This is most likely due to the smaller
size of the styrofoam ball. The fingers can con-

sequently close further around the ball and thus
tighten the grip. Additionally, the styrofoam
ball has a smooth surface so that the fingers can
tightly wrap around the surface, while the rat-
tan ball has a rough surface that impede a tight
grip.

The important factor of compliance becomes
even more apparent, when comparing the pres-
sure maps of a soft and hard piece of foam (com-
pare figure 8) for a side-on power grip. The
two objects, soft foam (object 2) as well as foam
square (object4), were similar in size, shape, and
weight. However, while the soft foam was very
compliant, the foam square was rather firm.

Note that again sensors 1 and 4 of finger 1
give faulty feedback and were not taken into ac-
count for any analysis. As the fingers approach
side-on, they grab the square-shaped foam pieces
longitudinally. The power grip really closed
around the object until the foam was tightly
squished. For the firm foam the two fingers push
the square into an angled asymmetric position,
so that the palm only receives pressure on one
side, while J3 is pushing back hard with the dis-
tal end of the finger tip. As opposed to this, the
pressure sensors show no response to the soft
foam. This was consistent for all grasps of the
soft foam and other soft objects, such as plush
octopus (object 6).

We conclude that the compliance of the ob-
ject is the main factor which influences the re-
sponse in the pressure sensors. The size of
the object will influence how tightly it can be
gripped and thus also show its effect, though in-
directly. Grasping small objects such as the cube
or the bean bag with the power grip, finger 1 will
not make contact at all, thus leaving the pressure
readout blank.
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(a) Top-down Prismatic Precision grip of rattan ball (object 9)

(b) Top-down Prismatic Precision grip of styrofoam ball (object 1)

Figure 7 Pressure maps of fingers 1-3 and palm of Barrett Hand. Pressures are recorded in N
cm2 and

plotted as a mean over the grasping trial for each respective cells. The Top-down Prismatic Precision grip
compared for two round objects with different weights and surface characteristics.
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(a) Side-on Power Grip of hard foam square (object 4)

(b) Side-on Power Grip of soft foam square (object 2)

Figure 8 Pressure maps of fingers 1-3 and palm of Barrett hand. Pressures are recorded in N
cm2 and

plotted as a mean over the grasping trial for each respective cells. The Side-on Power Grip compared for
a soft and a hard square piece of foam.
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Neural Network

The goal of the neural network analysis was to
assign labels to certain objects and train the
hand to familiarize itself with the sensor re-
sponse generated by each object. In this way
it should be able to recognize an object while
grasping it, and then plan the next grasp ac-
cordingly. We tried to implement this method
and improve its performance in the course of the
project. Each step listed below was taken be-
cause the neural network analysis of the previous
version showed no meaningful results (i.e. when
performed on the robot it was not able to name
an object correctly).

• Initially we attempted training on raw, un-
normalized sensor data. The network per-
formed poorly, attaining only 16% accu-
racy even on the training set itself. We
found that normalization of the data was
absolutely crucial for training the neural
network to good accuracy.

• After normalization, the data set was split
into training (80%) and test data (20%)
randomly. For both training and valida-
tion the neural network analysis reached
suspiciously high accuracy of more than
96%.

• Faulty pressure readouts were detected
and removed. We considered average read
outs of over 15 N

cm2 as faulty, especially
when identical readings were observed over
many different objects and grasp types.

• The high accuracy on the test set and poor
performance in the real world indicated to
us that we had overfit the data. To miti-
gate this issue we increased the regulariza-
tion weight. This led to a lower accuracy of

training and validation step in the neural
network analysis and seemed to favor cer-
tain objects for the respective grasp types.
It did not significantly improve real-world
performance, but did give us some insight
to be discussed below.

• As the number of trials for some objects
were significantly higher than for others,
we excluded these objects to provide a
more balanced data set. This also seemed
to afford no improvement.

Despite all our efforts to improve the neural net-
work analysis, we were unable to obtain any
kind of reliable performance. The fact that per-
formance on the validation set nearly always
matches performance on the training set should
indicate that no overfitting occurred. However,
it may be the case that the validation data was
in fact was too similar to the training data, since
they were acquired as different time slices of the
same grasp, rather than being taken from to-
tally different grasp samples. This suspicion is
emphasized by the 99% accuracy of the neural
network, a strong indication for overfitting the
data.

Tests on the robot confirmed this. Objects
could not be recognized correctly at all. How-
ever, for each grasp type, there were two or three
select objects which would be identified correctly
a majority of the time. The system seemed to
prefer these objects and named these repeatedly,
independent of which object was being grasped.

Adjusting the regularizer gave a lot of in-
sight into this phenomenon. We were able to
expose this behavior in the test data by using
very heavy regularization. Running the network
with � = 100 led to a much lower accuracy for
the neural network training—about 36%. When
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we examined the individual predictions for each
object, we found that there were a few objects
which dominated. These objects were repeatedly
predicted, thereby exhibiting 100% recall (true
positives / actual positives) but very low preci-
sion (true positives / predicted positives). The
other objects therefore had 0% recall.

To summarize, the neural network analysis
did not work for the given training and valida-
tion data. It appears to be too heavily biased
toward certain objects, though we are still un-
sure as to why. This behavior is usually not
evident in the test set. Our conclusion is that
either there were not enough individual grasps
sampled, or the method does not hold for the
desired task.

IV Limitations

Even if our method had performed as well on
the robot as it did on the test set, there were
many limitations to using this approach for ob-
ject recognition.

First and foremost, the method is limited
only to objects which have been observed before.
It is designed only to recognize a known object;
it does not encode any higher-level characteris-
tics which can then be observed in new objects.
The method is also highly dependent on object
orientation and size. The neural network needs
to have been trained with a grasp of an object
in a particular orientation in order to be able to
recognize that object the next time it is observed
in that orientation.

Nor is it invariant to the shape of the hand,
since we use raw sensor data rather than ex-
tracting a feature vector from local keypoints,
as is typical in computer vision. Because of this
dependence on hand and finger pose, in order

to perform recognition over all the grasp types
shown in Section II, it was necessary to train a
separate neural network for each type, and use
the network which corresponds to the current
grasp when performing predictions.

We also consider the method likely to break
down when number of objects increases. Classi-
fication gets significantly harder the more classes
you have to decide between (not to mention
training becomes much costlier). There is likely
to be some point at which splitting hairs between
similar classes becomes intractable.

Another drawback is the rather inaccurate
tactile sensing. Object shapes do not necessarily
show up in the pressure maps of the tactile sen-
sor arrays. Due to the small spatial resolution
of the sensor arrays, localization of shape con-
tours is coarse. In addition, the sensors gave re-
peatedly erroneous feedback (see figure 9) which
made reliability doubtful. Due to the tightness
of the grasps, contact surfaces with the fingers
are often broad. These particular sensors prob-
ably call for a treatment very different from the
edge/corner detection of computer vision algo-
rithms, and so we are also unsure about their
use in neural network classification.

Figure 9 Faulty pressure read out exemplary
for top-down prismatic precision grip. Such
readout occurred repeatedly for each grasp.
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V Conclusion and Future Work

The neural network, as we implemented it, did
not yield valid predictions of the object being
grasped. The question that remains is whether
the method is not suitable for this specific setup
or if the data set was not sufficiently large or
diverse. Other questions we haven’t answered:
Why does the network prefer certain objects for
certain grasps? What feature influences the neu-
ral response? Was there one feature that dom-
inated all other sensor input? Answering these
questions proves difficult due to the opacity of
the neural network and the difficulty of under-
standing the function of the parameters (⇥).

Possibilities for the future are numerous.
Now that the system is up and running, more
data samples could be collected to have differ-
ent sets for neural network training and testing.
This would hopefully remove the excessive simi-
larity between our current training and test sets,
and allow us to analyze the performance of the
neural network offline, without having to run the
robot.

Another important issue would be to fix the
lack of finger torque data. In addition to the
current setup, a setup with immobile objects
(fixed to the workbench) could be further ex-
plored. We have observed that if objects are al-
lowed to move, the finger torque response is not
significant until all three fingers are simultane-
ously putting pressure on the object. If the ob-
jects were fixed, our original idea to implement
a preshaping of the hand could then possibly be
performed in a combination of initial contact and
object recognition.

In the course of the project, we became
painfully aware of the difficulty of collecting
sufficient data for statistical techniques to

teach the robot grasp experience. Robots are
often slow, and collecting recordings of their
experiences in the real time world is time
consuming and resource-intensive. One major
lesson from all the setbacks we went through is
that there may be more to gain from using what
is known about human motor control, rather
than unpredictable and black-box statistical
techniques. Until robots are in widespread use,
there may not be enough variety of experiences
for them to learn from by brute force alone.
We should instead start from a known point
using existing knowledge of human haptics and
optimize from there.
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