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Abstract

We address a Gaussian process model selection problem. We wish to model and
predict human motion in a crowd. Gaussian processes can be a useful tool for
representing the probability distribution over future trajectories of pedestrians in
a crowd. However, selecting hyperparameters for the GP can be difficult and
prone to overfitting and degeneracy. In addition, it can be difficult to evaluate
the performance of different models in order to choose the best one. To bring
more robustness to the training, we propose and evaluate multiple novel methods
for the optimization of the hyperparameters. To address the problem of evaluation,
we employ a version of the statistical similarity metric proposed by Guy, et al. [1].
Ultimately we find that the best method is to train multiple models on individual
pedestrians, and use the entropy metric to find the best one.

1 Introduction

Crowd simulation is a hard and interesting problem with many applications. It is already in commer-
cial employ to aid in traffic and transportation engineering, building design, emergency procedures,
and much more.

Crowd simulation also has important applications to robotic motion planning. Our primary concern
is the development of algorithms for navigation in dynamic environments (environments with mov-
ing obstacles, mostly pedestrians). Accurate prediction of human motion is crucial for navigation
in such environments. A robot must have an accurate estimate of the future state of the obstacles in
order to perform robust collision avoidance. Without accurate predictions, the forward simulation
of the crowd will result in an “uncertainty explosion” causing the robot to freeze [2].

Accurate predictions of human motion are important for yet another reason: to produce natural,
human-like motion on a robotic platform. If it is possible to predict the state of all agents at time
t + 1, and the robot is one of those agents, then the MAP approximation of the crowd distribution
yields the robot’s future path. This is an instance of planning reducing to inference, as described by
Trautman et al., 2013 [3].

Trautman and Krause have developed one such method for approximate inference on crowds, and
applied it to robot navigation in a crowded cafeteria [3]. The main contribution of this paper is to
improve the training of this algorithm.

2 Related Work

2.1 Agent-Based Crowd Simulation

In crowd simulation literature, models fall generally into one of two categories: macroscopic and mi-
croscopic [4]. In this work we are concerned with microscopic models, which model each individual
agent as a decision-making entity in order to evolve the crowd state.
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One of the earliest (and still prominent) models in this category is the Social Force Model [4]. In this
model, each agent is modeled as a particle which moves according to attracting and repelling forces
determined by its goal and environment information. This is also an example of a model which has
many parameters that must be carefully tuned. The model is not learned from data.

There have been some attempts at data driven models in recent years. Lerner et al., 2007 [5] is a
prominent example. Here a database of common situations is built from data, and a decision-making
agent queries the database for the path they should follow, based on their current situation. The
results of this technique were assessed visually, rather than being rated by some objective metric.

In Pellegrini et al. 2009 [6], the authors attempt to learn parameters of a social behavioral model
in order to yield improved multi-target tracking. They did not attempt to represent the probability
distribution of future agent states, however.

2.2 Robotic Navigation in Crowds

RVO [7] is another method for motion planning in dynamic, crowded environments. It is able to
make a theoretical guarantee of collision avoidance, but only under the assumption that all agents are
operating under the same family of behavioral rules. Additionally, RVO features many parameters
which must be manually tuned or optimized via a search algorithm. In contrast to our method, the
parameters of human motion are not learned directly from data, and RVO does not attempt to model
the distribution over future trajectories.

Kuderer and Kretzschmar [8] have also approximated the human distribution via Maximum Entropy
Inverse Reinforcement Learning [9]. Their method of approximate inference can be seen as a good
competitor to ours, though it relies on a mixture of topological variants which may not scale to
densely populated environments (see Section VI.F of their RSS 2012 publication [10]).

3 Methods

3.1 Previous Work

3.1.1 Interacting Gaussian Processes

Our starting point in this project is an existing implementation of Interacting Gaussian Processes
(IGP), a nonparametric stochastic crowd model based on Gaussian processes (GPs). In IGP, the
actions of all agents are modeled as a joint distribution:

pIGP (f
(1) . . . f (n)|z1:t)

where f (i) is agent i’s trajectory over T timesteps and z1:t is the set of all observations up to the
current time point. The goal for each agent is given as a final “observation” at time T , resulting in
the full set of observations z1:t,T . The prior distribution of each agent is represented by a Gaussian
process.

To model the joint distribution of all agents, we have an interaction potential ψ(f (i), f (j)), which
substitutes for the conditional p(f (i)|f (j)) of one agent conditioned on another. The function encodes
collision avoidance behavior, such that any set of paths where agents become too close is treated as
very unlikely. Thus, the final posterior pIGP is computed by multiplying all the prior probabilities
of the agents with their pairwise interactions.

The result is a nonlinear, multimodal distribution, so it can’t be evaluated directly. Instead, we
sample from the GP priors and resample weighted by ψ. Given this formulation for pIGP and an
appropriate weighting wi for each sample, the ideal paths can now be expressed as the maximum
a-posteriori (MAP) assignment for the posterior,

(f (1) . . . f (n))∗ = argmax
f

(
N∑
i=1

wi(f
(1) . . . f (n))i

)

where (f (1) . . . f (n))i is a set of samples from the Gaussian processes (f (j))i ∼ GP(f (j),m(j)
t , k

(j)
t ).

We take agent i’s next position to be (f
(i)
t+1)

∗. See [3] for the full details.
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3.1.2 Importance of the Covariance Function

In order to implement IGP, the first and most crucial step is to construct a Gaussian process which
fairly well captures the distribution of human movement, as a function of time. To do this we
must select both an appropriate kernel and appropriate length-scale parameters for the kernel. This
process is illustrated in Figure 1, where we draw sample trajectories from different GPs.

It has been found in our previous work that a good representation of human movement can be built
using the summation of linear and Matérn 5/2 kernels, with an additional noise assumption on the
training data.

(a) Poor choice of covariance function (squared expo-
nential) and poorly tuned hyperparameters. Notice the
attraction toward the mean, (0, 0).

(b) Improved hyperparameters are still not enough to
overcome a fundamentally incorrect covariance func-
tion.

(c) Good choice of covariance function (Matérn + linear
+ noise) brings us much closer to the mark, but badly
tuned hyperparameters still makes things difficult.

(d) Good covariance function combined with good hy-
perparameters.

Figure 1: The importance of choosing proper hyperparameters. Hyperparameters must be learned to
properly match what we expect from human and robot movement patterns. Hyperparameters must
be further tuned for a particular scene, since they are closely related to the scale of our coordinate
frame.

3.1.3 Training of the Hyperparameters

Assuming that we have made a good choice of covariance function, we still need to select the
hyperparameters for the function. Normally, we would optimize the likelihood of the training data
w.r.t. the hyperparameters, as described in Chapter 5 of Gaussian Processes for Machine Learning
[11]. The simplest way to do this would be to select an agent whose path is generally “representative”
of human motion, and train on them. It is not directly possible to train on multiple agents at once.
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This difference arises because our problem has a fundamentally different nature than that of other
GP applications. In our case, rather than having a single training corpus, each pedestrian constitutes
its own set of training data for the Gaussian process. There is no single underlying function we wish
to model, because every pedestrian forms a new function. Our problem is to find hyperparameters
that represent this entire class of functions.

This introduces vulnerabilities in the training process where the training procedure may overfit the
individual chosen or produce a degenerate covariance due to some kinks or noisiness in the path.
See Figure 2 for a qualitative example of what can happen if you make a poor choice of pedestrian.

(a) Poor hyperparameter learning. Agent #194 only. (b) Better hyperparameter learning. Agents #194-202.

Figure 2: An illustration of how poor choice of exemplar agent can hurt you. If you chose pedestrian
#194 to train on, you would get the paths shown in (a). Notice the way they kink up in the middle
and shoot out at the ends. Our method can take #194 and a handful of other pedestrians, and learn
good hyperparameters from them (b). (Best viewed on a screen. Zoom in for more detail.)

Given these issues, we would like a more reliable way to train the hyperparameters. We would
also like, given multiple candidates, a way to select the set of hyperparameters which more closely
resembles human movement.

3.2 Contributions

To address the problem of only being able to optimize the hyperparameters with respect to a single
pedestrian, we propose three different methods for optimization w.r.t. multiple pedestrians:

• Joint Optimization

1. Concatenate pedestrian paths into a single parametric function. When doing so, shift
the paths in time so that they are very far apart from each other on the timeline. This
will ensure that their covariance is negligible.

2. Train as normal on this much larger “path”.

• Bagged Optimization

1. Optimize the hyperparameters separately on each agent, as you would normally.
2. Take the mean of the hyperparameters as the final result.

• Stochastic Optimization

1. Optimize the hyperparameters for a single agent, as normal.
2. When you move on to the next agent, do not use a new set of hyperparameters, but

rather use the previous ones as an initial starting guess.
3. You may choose to apply early stopping to each agent, to prevent overfitting to any

one agent.
4. Continue cycling through the agents in this way until convergence.
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In order to determine which one of these methods is best, we should have an objective way to
measure the performance of the models they produce. For this we propose a variation on the entropy
metric from Guy et al. 2012 [1]. We provide the details of this statistic in the next section.

3.3 Entropy Metric

In our problem, the data are xy-positions on a plane, and so they can be visualized, as we have done
earlier in our paper. However, beyond a certain accuracy, the human eye cannot necessarily perceive
the best or most “human-like” motion. Furthermore, when it comes to prediction, we can only judge
similarity to the true paths, and cannot easily evaluate the probability of that path, or visualize the
distribution over an evolving function of time.

We will never have access to the true distribution of possible futures, but we can objectively evaluate
our resemblance to a recorded data set. Wolinski et al. 2014 give a brief overview of such crowd
prediction metrics [12]. These include:

• Absolute position difference

• Path length

• Inter-pedestrian distance

• Progressive difference (absolute difference when the simulation is re-initialized at each
timestep)

• Vorticity (a fluid dynamics measurement)

• Fundamental diagram (a measure of pedestrian flow rate)

Since we are primarily concerned with microscopic crowd models, we are less interested in the last
two metrics. There are some problems with the other metrics. The behavior of a crowd is highly
stochastic, and small changes can quickly compound. Thus these errors may unfairly penalize a
simulation that made a bad step early on. We should instead treat any ground truth dataset as a
sample from an unknown distribution and perform a statistical analysis on the behavior represented
from the example motion.

To this end, Guy et al. proposed a statistical similarity measure for crowd dynamics [1]. Broadly
speaking, the entropy metric seeks to measure the size of the prediction error. Given a crowd state
xt, we wish to measure the variance of the prediction xt+1. To summarize,

xt+1 = f(xt) = f̂(xt) +mt, mt ∼M (1)

where f is the true transition function, f̂ is the prediction, and mt is the prediction error. This
means the error is characterized by the distribution M, which is assumed to be Gaussian with 0
mean. Furthermore, the error for each agent is assumed to be independent (i.e. the predictor is
not biased toward any particular agent). Thus, the distribution can be fully characterized by the
per-agent variance M .

Thus, to calculate the entropy metric we must only estimate the expected value E[M ] and compute
the entropy,

H(M) ∝ H(N (0,M)) =
1

2
log((2πe)d det(M)) (2)

The difficulty in [1] comes from the fact that they wish to estimate the latent, true position and
velocity xt = [px, py, vx, vy] from only the observed, noisy position zt = [px, py]. Since the true
state xt is unknown, estimating the variance M is non-trivial. They accomplish this through an
Expectation-Maximization algorithm that estimates the states given the prediction (E-step), and the
prediction given the states (M-step), in turn. For full details and algorithm, see their paper.

Since our prediction system deals solely in (x, y) positions, our latent state is the same as our ob-
served state. Furthermore, our dataset is manually annotated, so we can fairly assume that the
observation noise is negligibly small. Therefore, in this work we have assumed that we can observe
the true state (zt = xt), allowing us to do away with the Expectation step of the algorithm. Thus we
can simply estimate the variance M using the following algorithm.
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Algorithm 1: Expected variance M

M = 02×2;
Z = 0;
for each timestep t do

for each simulation sample m do
xt+1 = f̂(xt);
for each agent a do

err = zt+1[a]− xt+1[a];
M+ = err(err)T ;
Z+ = 1;

end
end

end
M/ = Z;

4 Analysis

In this section we showcase the usefulness of our entropy metric, as well as use it to report the
performance of our proposed hyperparameter optimization methods.

The dataset to be used is the ETH Walking Pedestrians (EWAP) dataset from [6]. It can be obtained
from [13]. Twelve sequences were manually selected from this video. Each sequence features
multiple agents interacting with another. Most of the sequences were intentionally selected to be
difficult to predict without some model of the collision avoidance behavior of individuals (sparsely
populated sequences were discarded).

4.1 Validation of Entropy Metric

First it was necessary to validate that the entropy metric performs as we expect it to. We implemented
a simple prediction model which takes the ground truth velocity at time t and perturbs it using
additive Gaussian noise. This results a path which is perturbed from the ground truth by a given
variance. When we run the entropy metric on a sequence at different noise levels, we expect the
score to increase logarithmically with the noise variance.

In Figure 3 we see that this logarithmic scale is exactly what arises. This confirms to us that we can
reliably use the metric as an error measure in the comparison of different prediction models.

4.2 Hyperparameter Optimization Experiments

We tested four different methods for optimizing the hyperparameters of a human motion model, as
outlined in Section 3.2. In all cases, the agents used in training were excluded from the validation
set. Only the hyperparameter values were changed in each test; all other parameters were held fixed.
The test results on the remaining sequences are summarized in Table 1.

We see that performance generally improves with number of pedestrians included (see Figure 4).
We interpret this result to mean that our multiple-pedestrian training methods are able to capture a
wider variety of human motions and avoid overfitting and degeneracy.

We also see that among the multiple-agent training methods, the bagging method gives the best result
according to the entropy metric. We find this at least somewhat surprising as there is not necessarily
any statistical validity in the averaging of hyperparameters from different (though similar) datasets.

None of the stochastic methods we tried produced good results, and in most cases they produced
degenerate covariance matrices, so we do not include their results here.
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Figure 3: The entropy metric, evaluated on sequence #10 for noise variances in the range [0.1,
100]. This confirms to us that the entropy metric is monotonically increasing with the error in the
prediction, making it a valid statistic for performance measurement. We also note the approximate
range of values we can expect to see for different values of the per-agent variance M .

194 195 198 199 194, 197 194-202 194-202 194-224 174-224
Sequence Single Single Single Single Joint Joint Bagged Bagged Bagged

1 5.098 4.416 4.82 4.3 4.907 4.732 4.671 4.537 4.643
2 3.392 2.364 2.545 2.195 2.477 2.392 2.345 2.236 2.286
3 4.65 3.868 4.319 3.608 4.337 4.1 3.975 3.908 3.942
4 - 3.741 4.042 3.519 3.816 3.709 3.7 3.618 3.697
5 - 3.024 3.457 2.91 3.234 3.128 3.142 3.049 3.129
6 - 3.243 3.554 2.877 3.55 3.347 3.024 3.028 3.087
7 - 3.487 3.859 3.319 3.72 3.535 3.499 3.45 3.526
8 - 3.074 3.074 2.661 2.993 2.866 2.722 2.727 2.791
9 - 3.892 4.142 3.527 4.157 3.965 3.708 3.664 3.738
10 - 2.763 3.226 2.515 3.194 3.084 2.718 2.699 2.756
11 - 2.32 2.726 2.142 2.62 2.458 2.321 2.255 2.356
12 - 1.427 1.479 0.819 1.533 1.388 1.009 1.035 1.088

Table 1: Hyperparameter Optimization. The header lists the agent(s) used to train the hyperparam-
eters. For the cases with multiple agents, either the Joint Optimization or the Bagged Optimization
are used. Lower scores are better (exponentially better, since the metric is on a log scale). The
missing values are because the model produced degenerate covariance matrices for those test cases
(remember that agent 194 was our classic example of poor training). The best performer is in bold
and the second-best is in blue. This shows us that in general, a bagged model is a safer bet, but it
can be out-performed with a clever choice of single agent.

4.3 Interaction Algorithm Experiments

Armed now with a reasonable prior for an individual agent’s motion, we can experiment with dif-
ferent methods for forming the joint posterior over all agents. We use the entropy metric to evaluate
variations on our algorithm to see if they can bring about an improvement. The results are summa-
rized in Table 2.

We test three different methods:

• Non-interacting Gaussian Processes: Samples from the agent GPs are not weighted by
their proximity to other agents. An agent’s future path is simply the mean of its samples.
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Figure 4: A rough sketch of how performance improves with number of pedestrians included in the
optimization (lower is better). However, there may be a limit to this, as it slightly increased when
we tried a very large pool of agents.

• IGP with Weighted Averaging: Each sample from the joint agent probability distribution is
weighted by the Interaction Function ψ. An agent’s future path is the weighted mean of
samples (the expected value of the posterior).

• IGP with Weighted Resampling: Importance sampling is performed on the agent samples
and the agent’s future path is taken as the MAP statistic (this is the standard IGP algorithm
outlined in Section 3.1.1).

The question we ask is, “How much is interaction helping us to determine the direction of motion?
Can we do just as well with an approximation to the interaction?”

The surprising answer to this question is that, yes, we can do just as well. Now that we have a
reliable method of comparison, we can see clearly that our interaction function is not helping, and
may in fact be hurting our prediction. This is the second non-intuitive result made visible to us by
our use of the entropy metric.

Sequence Unweighted Weighted Mean Weighted Sampling
1 4.498 4.539 4.542
2 2.231 2.239 2.250
3 3.703 3.875 3.905
4 3.576 3.624 3.622
5 3.031 3.051 3.053
6 2.844 3.025 3.056
7 3.391 3.447 3.446
8 2.637 2.728 2.723
9 3.509 3.686 3.692
10 2.463 2.707 2.695
11 2.161 2.287 2.301
12 0.724 1.006 1.037

Table 2: Interaction Algorithm Tests. Best performance is marked in bold. The fact that the non-
interacting version of the algorithm won means we’ve got some work to do, or it may mean that our
entropy metric has some weaknesses.
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5 Conclusion and Future Work

The crowd entropy metric has allowed us to compare models and determine the best one. We have
made the selection of hyperparameters more straightforward and robust by using the metric as a
cross-validation tool, combined with novel hyperparameter learning methods.

We have also gained insights into our model, specifically that our interaction function is not mod-
eling the crowd very well. However, this may be due to the simplifying assumptions we made in
Section 3.3, which allowed us to leave out the E-step of the original algorithm. It would be prudent
to implement the full algorithm and investigate how that affects the results. We would also like to
loosen the assumption of a known goal for each agent. This is an unrealistic assumption and the
interaction potential may be helpful in situations with less goal information.

One disadvantage of the entropy metric is that it is expensive to compute, and thus not really suitable
for an in-depth search of the parameter space of our model. For future work, Wolinski et al. [12]
suggest to implement automatic parameter optimization using various simpler metrics for validation,
and finally using the (more expensive) entropy metric for reporting the final performance.
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