
April 10, 2014

Robot Navigation in Dense Human Crowds
Final Report

Neil Traft
University of British Columbia

Overview

In their 2010 IROS publication [1], Trautman
and Krause develop a path planning algorithm
that is safe and yet does not suffer from the
“freezing robot problem” (FRP). Their method
consists of a model of crowd interaction com-
bined with a particle-based inference method to
predict where the crowd (and the robot) should
be at some time t+ 1 in the future. The idea is
that if one can develop a reliable model of intelli-
gent agents in a crowd, and include the robot as
just another of those intelligent agents, then the
predictions of the model yield the robot’s future
path.

The goal of this project is to reproduce their
results in simulation on the original dataset.
Given some annotated video of pedestrians in
a crowd, we can choose one of the pedestrians
to represent the robot, and compare the path
planned by the robot to the actual path taken
by the pedestrian.

Interacting Gaussian Processes

The crowd interaction model is a nonpara-
metric stochastic model based on Gaussian pro-
cesses, dubbed Interacting Gaussian Processes
(IGP). In IGP, the actions of all agents, includ-
ing the robot, are modeled as a joint distribu-
tion:

p(f (R), f |z1:t)
where f (R) is the robot’s trajectory over T
timesteps, f is the set of all human trajectories,
and z1:t is the set of all observations up to the
current time point. For the purposes of this algo-
rithm, observations of human and robot position
are taken to be more or less perfect, since we are
only trying to solve the navigation problem, not
situational awareness.

At each timestep, each agent’s new position is
represented as a random variable from a proba-
bility distribution. It is important to note that
this distribution is not Gaussian, due to two ma-
jor additions to avoid the uncertainty explosion
which leads to the FRP (see Figure 1).

First, goal information is given as a final “ob-
servation” at time T , resulting in the full set of
observations z1:t,T . The robot’s goal, y(R)

T , is
known and can be added with good confidence.
The goals of other agents can be omitted or can
be added with a high variance, to encode how
uncertain we are about the goal.

The second addition IGP makes to standard
Gaussian processes is the inclusion of an “inter-
action potential”,

ψ(f (R), f) =

n∏
i=1

n∏
j=i+1

T∏
τ=t

(
1− α exp

(
− 1

2h2
|f (i)τ − f (j)τ |

))

In essence, this potential grows very small
whenever two agents i and j become very close
at any time τ . This has the result that any set of
paths where agents become too close is treated
as very unlikely. The parameter h controls the
desired “safety distance” and α ∈ [0, 1] controls
the “repelling force”. Thus, the final posterior is
given as:

pIGP (f
(R), f |z1:t) =

1

Z
ψ(f (R), f)

n∏
i=1

p(f (i)|z1:t)

The above is a nonlinear, multimodal distri-
bution, so it can’t be sampled directly. Instead,
we sample from Gaussian priors p(f (i)|z1:t) and
resample weighted by our desired distribution (a
particle filter). This is described in the next sec-
tion.

Robot Navigation in Dense Human Crowds Neil Traft — 2

Figure 1 Diagrams taken from [1] describing the uncertainty explosion which leads to the Freezing
Robot Problem. Left: Depicts the uncertainty explosion in standard motion models, where each agent’s
trajectory is independent from the others. Middle: A demonstration of why even perfect prediction,
devoid of uncertainty, can still lead to the FRP. In crowded environments, all paths can have a high cost
function, leading to extreme evasive maneuvers or freezing. Right: The ideal model, based on the insight
that intelligent agents engage in cooperative collision avoidance.

Importance Sampling

Now that we have a model, we wish to sample
from it and take the mean as the desired path.
Since we can’t sample from it directly, we instead
use the importance sampling technique which is
widely used in particle filters. Each sample is
weighted by the ratio of the IGP to the basic
GP (i.e. the Gaussian distribution, without the
interaction potential):

wi =
pIGP
pGP

=
pIGP ((f

(R), f)|z1:t)∏n
j=R p((f

(j))i|z1:t)

=
ψ((f (R), f)i)

∏n
j=R p((f

(j))i|z1:t)∏n
j=R p((f

(j))i|z1:t)

= ψ((f (j))i)

where (f (j))i is a single sample from the trajec-
tory of agent j.

Given this formulation for pIGP and an ap-
propriate weighting wi for each sample, the ideal
paths can now be expressed as the maximum a-
posteriori (MAP) assignment for the posterior,

(f (R), f)∗ = argmax
f (R),f

(
N∑
i=1

wi(f
(R), f)i

)

where (f (R), f)i is a set of samples from the Gaus-
sian processes (f (j))i ∼ GP(f (j),m(j)

t , k
(j)
t). The

total number of samples is N and we take the
robot’s next position to be (f

(R)
t+1)

∗. To approx-
imate the optimal robot path (f (R))∗, we take
the mean path over all samples after importance
resampling:

(f
(R)
t)∗ =

1

N

N∑
i=1

(f
(R)
t)i

Implementation

The project is implemented in Python, us-
ing the OpenCV library [2] for visualization and
video playback (but not for any of the vision al-
gorithms it provides).

The Dataset

The dataset to be used is the ETH Walking
Pedestrians (EWAP) dataset from [3]. It can be
obtained from [4].

The dataset contains two annotated videos of
pedestrian interaction captured from a bird’s eye
view. The one used depicts pedestrians entering
and exiting a building.

Robot Navigation in Dense Human Crowds Neil Traft — 3

The main annotations are a matrix where each
row gives the position of an agent i in a par-
ticular video frame t. Thus for each frame t
we have potentially multiple pedestrian obser-
vations pos(i)t , and this forms our observation at
time t:

zt = pos
(1:n)
t

where one of the n pedestrians is chosen to rep-
resent the robot R. The velocities are not used
in the present IGP formulation.

The positions and velocities are in meters and
were obtained with a homography matrix H,
which is also provided with the annotations. To
transform the positions back to image coordi-
nates, it is necessary to apply the inverse ho-
mography transform:

pos
(i)
t

m
= H−1mw · pos

(i)
t

w

m = image, w = world

The intrinsic camera parameters are not needed;
it is presumed that they are included in the cam-
era matrix provided by the dataset. There is also
no translation needed; the origin of the world
can be taken to be the (transformed) origin of
the image without loss of generality. Thus, pixel
coordinates can be expressed as

r = −fx
x

z
=
u

z
c = −fy

y

z
=
v

z

where fx, fy are the intrinsic camera parameters
and x, y are coordinates in the image frame. So
to obtain pixel coordinates from image coordi-
nates it is necessary only to normalize so that
z = 1: rc

1

 =

 xm /z
ym /z
zm /z

Technical Hurdles

There are some nuances to using a Gaussian
process that can stun and bewilder those who
are new to them. IGP is very sensitive to these
nuances, and an understanding of Gaussian pro-
cesses is essential to getting it to work.

In addition to this, there are other param-
eters to be tuned and implementation choices
which are left open-ended by the original author.
These choices comprise the hurdles one has to
clear to see good results from IGP.

The Covariance Function

The covariance function (also known as a ker-
nel) used for the Gaussian processes in IGP is an
absolutely crucial consideration. However, the
authors of [1] do not describe their choice of ker-
nel. In their 2013 follow-up work, they men-
tion the class of kernel used, but do not go into
sufficient detail to reproduce their implementa-
tion. [5]

What is needed from our Gaussian process is
a prior which is straight most of the time, but
with some curviness. This encodes our assump-
tions about the way humans move. People al-
most always walk in straight lines, so we need
a Gaussian process that gives us that. We also
would like some curviness for those times when
people don’t walk straight, and we also need to
encode the noisiness of our observations. 1

From these requirements, we can see that the
traditional kernel for Gaussian processes won’t
be suitable. The general-purpose kernel is the
squared exponential (SE) kernel,

k(x,x′) = σ2 exp
(
− 1

2`2
|x− x′|2

)
where x and x′ denote two vectors of indepen-
dent variables whose covariance we wish to cal-
culate, and where σ2 and ` are the noise and
length hyperparameters, respectively.

First of all, the SE kernel is too variable; too
“curvy”. An example is given in Figure 2. The
aimlessly meandering paths seen there do not re-
semble a person enroute to a destination. More-
over, a much bigger problem is the fact that SE
is stationary (shift invariant). Informally, this
means that it will gravitate toward the mean
wherever there is no data. Observe how it hovers
about the origin in the example.

In contrast, the linear regression kernel is
a non-shift-invariant kernel which satisfies our
need for a straight path to continue in a straight
line in the absence of data. Also known as a dot
product covariance function, it is expressed as

k(x,x′) = σ2 + x · x′

1From correspondence with the author, Peter Traut-
man.

Robot Navigation in Dense Human Crowds Neil Traft — 4

(a) A summed kernel composed of squared exponen-
tial and noise kernels.

(b) A summed kernel composed of Matérn, linear
regression, and noise kernels.

Figure 2 The importance of choosing a proper
covariance function. (4a) This is much too curvy
and loopy to represent a human path. Hu-
mans generally have destinations; they don’t
wander aimlessly. (4b) We consider this to be
a much better model of human movement. Hu-
man paths are mostly straight, but with occa-
sional curviness.

Having only straight lines generalizes to sim-
ple linear regression, however, which is obviously
not desirable. We still need to be able to ap-
proximate nonlinear paths, so we add in one of
the Matérn class of covariance functions defined
in [6],

k(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√
5r

`

)
where r = |x− x′|2. This gives us nicely shaped
paths, and we finally add in a noise kernel, which

is just a constant variance applied to our training
data. The final choice of kernel is illustrated in
Figure 2, and an example of sampling from the
posterior can be seen in Figure 3.

Kernel Hyperparameters

Perhaps equally crucial to the choice of co-
variance function is the choice of parameters for
the covariance function. These include such pa-
rameters as the variance σ2 and the length-scale
`. The variables are often co-dependent 2 and
highly dependent on the data you wish to ap-
proximate. Generally, they should be learned
from the data. [6]

I was able to obtain the original hyperparam-
eters used for the EWAP dataset from Peter
Trautman, so I did not have to learn the hy-
perparameters myself. Even so, producing good
paths was not automatic.

Hyperparameters are directly dependent on
the scale of coordinate system. This means
that the hyperparameters must be tuned to the
units that the data is given in. Hyperparameters
learned in meters cannot be used in millimeters
or image pixels: the scale of the parameters must
match the scale of the data. Originally I imple-
mented the algorithm in the world coordinate
frame, and I had to switch to the image coor-
dinate frame to match the original implementa-
tion. Figure 3 shows an exploration of the ef-
fect of hyperparameters on predicting a simple,
straight-line path.

MAP Approximation

As mentioned in the Importance Sampling sec-
tion above, the next waypoint of the robot is
given by the MAP assignment of the posterior
distribution. However, it is not clear how this
is obtained in the original work. The answer is
that we take the mean of the resampled paths
in order to approximate the MAP assignment.
This is roughly equivalent to taking the weighted
mean of the Gaussian process samples, prior to
resampling.

2Meaning that if you fix one variable, the optimal
choice for the other variable depends on the value of the
fixed variable.

Robot Navigation in Dense Human Crowds Neil Traft — 5

(a) Poor choice of covariance function (squared expo-
nential) and poorly tuned hyperparameters. Notice the
attraction toward the mean, (0, 0).

(b) Improved hyperparameters are still not enough to
overcome a fundamentally incorrect covariance function.

(c) Good choice of covariance function (Matérn + linear
+ noise) brings us much closer to the mark, but badly
tuned hyperparameters still makes things difficult.

(d) Good covariance function combined with good hy-
perparameters.

Figure 3 The importance of choosing proper hyperparameters. Hyperparameters must be learned to
properly match what we expect from human and robot movement patterns. Hyperparameters must be
further tuned for a particular scene, since they are closely related to the scale of our coordinate frame.

Practically speaking, this is a shortcut. The
reason for it is that the path with the largest
weight is still unstable unless we take a very
large number of samples. 3 However, this poten-
tially destroys multimodal distributions, which
is why we used a particle filter in the first place.
This seems to work well enough in this example,
but an idea for improvement is described in Next
Steps.

3This sentiment was conveyed by Peter Trautman via
personal correspondence.

Experimental Results

I evaluated IGP on each of twelve pedestri-
ans, in turn, taken from a small segment of video
which exhibited high crowd density and interac-
tion. See Figure 4 for a screenshot of the scene.

The dataset and how it is annotated is already
outlined above. Once I had the ability to pro-
cess this data I set up an automated experiment.
For each pedestrian, IGP simulated a full exe-
cution of, not the pedestrian’s own path, but

Robot Navigation in Dense Human Crowds Neil Traft — 6

the path planned by IGP. The simulated “robot”
started and ended at the same location as the
pedestrian, but at all intermediate timepoints
the robot replanned the path as if it were at
the location planned previously. Timesteps were
fixed so that the pedestrian and the robot both
took the same amount of time to reach the end
goal (so it was assumed that the robot could
move as fast as the human).

(a) The samples from the posterior distribution (af-
ter resampling according to the interaction poten-
tial).

(b) The path ultimately planned (yellow), compared
with the pedestrian’s own path (pink).

Figure 4 Sample output of the final product.
Blue paths represent each agent’s path up to
the current time point, as well as their ultimate
destination.

At the end of each run, the robot’s perfor-
mance is compared to that of the human’s in
terms of two metrics: path length and path
safety. My results are summarized in Figure

5 and the results of [1] are shown in Figure 6.
In [1], IGP outperformed the human pedestrian
in both metrics, while in my own experiment,
it only outperformed in terms of path length,
and not safety. However, the robot never was
closer than the minimum observed distance of
two pedestrians over all runs (about 10 pixels).
Thus, we conclude that the paths planned by
IGP were safe and comparable to those of the
human.

Figure 5 The results of the algorithm per-
formed on 12 pedestrians from a particularly
crowded segment of the video. Observe that
IGP almost always finds an equal length or
shorter path than the pedestrian. However, the
pedestrian usually maintains a larger distance
from other agents, though IGP never goes be-
low the lowest observed actual separation (∼10
pixels), so it is considered safe.

The experiment was run with the minimum
number of particles needed for good results
(anecdotally, 100 particles). This took an av-
erage of 2.0 seconds to plan a single path on a
laptop. The original paper does not specify the
number of particles used in their experiment, so
this is quite possibly the reason for the differ-
ence in performance. There are also a number of
shortcomings which may have additionally con-
tributed to the degraded performance. These are
outlined in the next section.

Next Steps

First and foremost, I believe there are still
bugs in my implementation of Gaussian pro-

Robot Navigation in Dense Human Crowds Neil Traft — 7

Figure 6 The results reported in the origi-
nal paper, compiled from 10 trials. Here, we
see that IGP outperforms human pedestrians in
both path length and path safety. We aren’t told
which 10 pedestrians are evaluated in the origi-
nal paper, so these results are somewhat anecdo-
tal and will not necessarily align with our own.

cesses that need to be cleaned up. It generally
works, but I have not been able to confirm that
the covariance functions are completely correct.
Peter Trautman has expressed that the paths do
not look quite right. It is nice to know that
IGP performs well despite not having perfect
Gaussian process priors. It does seem like it has
degraded performance, however, and should be
fixed.

It is also possible that the performance has not
been fully evaluated, or that the results reported
in [1] are optimistic. In the near future, I would
like to run more experiments to fully evaluate
the algorithm’s performance over a number of
different crowd densities. There was only time
to run the single twelve-trial experiment for this
project.

Another major avenue I would like to ex-
plore is how to learn the hyperparameters for
the Gaussian process. I do not think this is too
difficult, but I did not have time to do it for
this project. The process is outlined in Chap-
ter 5 of [6] and Peter Trautman has provided me
with an example script. Knowing how to do this
would be necessary before trying the algorithm
in any other environment other than this exact

data set.
Along the lines of learning hyperparameters,

my current implementation uses the same set of
parameters for both human and robot agents.
But humans and robots do not move in the same
way (robots are generally less agile). So it fol-
lows that the best algorithm will learn separate
parameter sets for human and robot.

There are a number of other free variables in
IGP, other than those of the covariance func-
tions. The interaction potential has two in par-
ticular that may have a significant impact on the
performance of the path planner. The distance
into the future to plan a path is also an open
avenue of research. The original IGP predicts
a fixed 30 timesteps into the future, while mine
predicts the exact number of timesteps needed to
reach the goal (since my implementation runs on
annotated video, it can cheat by knowing the fu-
ture). An interesting avenue for research would
be to create a universal IGP algorithm, where all
these free variables, hyperparameters included,
could be learned online.

Another open problem is that of assigning des-
tination waypoints to the other agents in the
scene. This step is fairly important for control-
ling the variance on agents’ paths and getting
sensible results from IGP. The better we can
guess where someone is headed, the better we
can predict how they’re going to get there, and
this could be a good research question to answer.

Finally, I would like to speed up the imple-
mentation. The algorithm presented here took
about 2.0 seconds on average to plan a single
path, with 100 particles. The original paper cites
times of 0.1 seconds for the same number of par-
ticles, so there is much room for improvement
here. The original paper was written in Matlab
but I do not believe the language of implemen-
tation is the bottleneck. More likely, the GPML
toolbox’s implementation of Gaussian processes
is much more efficient than my own (some parts
of the toolbox are optimized in C).

Conclusion

In this project I have demonstrated the feasi-
bility of the Interacting Gaussian Processes algo-
rithm for path planning through human crowds.

Robot Navigation in Dense Human Crowds Neil Traft — 8

From these preliminary experiments, it seems
that IGP has potential as a tractable method for
searching through an infinitely large state space
of actions.

However, there is more work to be done. I was
not able to match the author’s reported perfor-
mance, neither in path planning nor in compu-
tational efficiency. I have noted some immedi-
ate improvements that could be made to my im-
plementation which would likely close this gap.
Still, I’ve also demonstrated IGP’s fragility in
terms of its heavy reliance on parameter tun-
ing. A compelling research problem for the fu-
ture would be to create a version of IGP which
learns these parameters online.

References

[1] P. Trautman and A. Krause, “Unfreezing
the robot: Navigation in dense, interacting
crowds,” 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems,
pp. 797–803, Oct. 2010.

[2] G. Bradski, “The OpenCV Library,” Dr.
Dobb’s Journal of Software Tools, 2000.

[3] S. Pellegrini, a. Ess, K. Schindler, and L. van
Gool, “You’ll never walk alone: Modeling
social behavior for multi-target tracking,”
2009 IEEE 12th International Conference on
Computer Vision, pp. 261–268, Sept. 2009.

[4] “Ethz - computer vision lab: Datasets.”
http://www.vision.ee.ethz.ch/
datasets/index.en.html. Accessed:
2014-03-01.

[5] P. Trautman, J. Ma, R. M. Murray, and
A. Krause, “Robot navigation in dense hu-
man crowds: the case for cooperation,” 2013
IEEE International Conference on Robotics
and Automation, pp. 2153–2160, May 2013.

[6] C. E. Rasmussen and C. K. Williams, Gaus-
sian Processes for Machine Learning. MIT
Press, 2006.

http://www.vision.ee.ethz.ch/datasets/index.en.html
http://www.vision.ee.ethz.ch/datasets/index.en.html

	Overview
	Interacting Gaussian Processes
	Importance Sampling

	Implementation
	The Dataset
	Technical Hurdles
	The Covariance Function
	Kernel Hyperparameters
	MAP Approximation

	Experimental Results
	Next Steps
	Conclusion

