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Abstract

An autonomous or semi-autonomous powered wheelchair would bring the benefits

of increased mobility and independence to a large population of cognitively impaired

older adults who are not currently able to operate traditional powered wheelchairs.

Algorithms for navigation of such wheelchairs are particularly challenging due

to the unstructured, dynamic environments older adults navigate in their daily

lives. Another set of challenges is found in the strict requirements for safety and

comfort of such platforms. We aim to address the requirements of safe, smooth,

and fast control with a version of the gradient sampling optimization algorithm

of [Burke, Lewis & Overton, 2005]. We suggest that the uncertainty arising from

such complex environments be tracked using a particle filter, and we propose the

Gradient Sampling with Particle Filter (GSPF) algorithm, which uses the particles as

the locations in which to sample the gradient. At each step, the GSPF efficiently finds

a consensus direction suitable for all particles or identifies the type of stationary

point on which it is stuck. If the stationary point is a minimum, the system has

reached its goal (to within the limits of the state uncertainty) and the algorithm

naturally terminates; otherwise, we propose two approaches to find a suitable

descent direction. We illustrate the effectiveness of the GSPF on several examples

with a holonomic robot, using the Robot Operating System (ROS) and Gazebo robot

simulation environment, and also briefly demonstrate its extension to use a version

of the RRT* planner instead of a value function.
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Lay Summary

Some of those who are most in need of improved mobility are unable to operate a

powered wheelchair safely and are denied this crucial improvement to their quality

of life.

If a robotic platform were able to liberate the user from the low-level tasks of

collision avoidance and smooth steering, it would open up usage to a much wider set

of individuals and only require high-level directional commands. Furthermore, this

kind of human-robot teamwork would have wide-ranging applications far beyond

powered wheelchairs.

Our work is a start down the path toward forms of human-robot teamwork that

can meet the safety requirements needed to pass certification for operation of a

powered wheelchair. It exhibits safety benefits over more traditional approaches

while remaining efficient enough to be applied on a platform of limited power and

compute such as a wheelchair.
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Preface

The algorithm described in Section 3.4 was originally conceived by my supervisor,

Ian Mitchell. This algorithm, along with the experiments in Sections 5.1, 5.2, and

5.4 were presented in our publication: N. Traft and I. M. Mitchell. Improved

Action and Path Synthesis Using Gradient Sampling. In 55th IEEE Conference on

Decision and Control, pages 6016–6023. IEEE, 2016. [37] Chapters 3, 4, and 5

were borrowed, with modifications and additions, from this paper.

The implementation of GSPF is based on an earlier version by students Branden

Fung and Carolyn Shen.
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Chapter 1

Introduction

This research was supported by CANWHEEL1, an interdisciplinary team of clinical

researchers and basic scientists. The engineering team at CANWHEEL is concerned

with bringing the benefits of power wheelchairs to a wider group of users than is

currently possible, particularly by making wheelchairs easier to operate. A key

breakthrough in this regard would be a power wheelchair that largely drove itself,

or assisted in the avoidance of obstacles. Thus, one of the high-level goals of the

researchers at CANWHEEL is to design, build, and evaluate an autonomous or

semi-autonomous powered wheelchair.

Such a wheelchair should be able to operate in ordinary homes and hospitals,

should offer a comfortable ride, and should above all have strong safety guarantees.

These requirements constitute significant challenges to the underlying robotic sys-

tem: navigation in an uncertain environment and safe, smooth control. In this thesis

we propose a simple solution to these two common control problems.

1.1 Navigation Under Uncertainty
One of the most significant challenges on the way to realizing this goal is the

dynamic, unstructured environments that this type of wheelchair will need to operate

in to be successful. A powered wheelchair is most useful in the user’s home, in a

hospital, or in an elder care facility where older adults with mobility challenges

1Website: http://www.canwheel.ca/.
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may frequently find themselves. Homes are varying and sometimes cluttered—this

makes for an unstructured environment that is difficult to measure and map precisely.

Hospitals are even more difficult for the fact of being filled with other people,

moving about to their own destinations. This makes for a dynamic environment

whose future state is difficult to predict.

Despite decades of robotics research in these kinds of environments—for in-

stance, the museum robot RHINO [6] of 1998 and robotic wheelchairs from at least

as early as 19902—navigating safely and robustly in these environments is still a

difficult and unsolved problem.

The difficulty of such environments is twofold:

1. Their unstructured, possibly cluttered nature gives rise to a large amount of

uncertainty in the current and future state of the environment. Planning under

uncertainty is a rich field and will be discussed in Chapter 2.

2. Their dynamic nature requires the robot to perceive and react quickly to

changes in the environment.

These two features are difficult to reconcile. Planning under uncertainty requires

the consideration of not a single observed state, but all possible states of the

environment. The resulting computational complexity makes it much harder to plan

as quickly as feature #2 requires.

1.2 Safe, Smooth Control
It is our goal to generate a safe and smooth control signal, given a map of obstacles.

These two goals can be contradictory.

To synthesize safe controls, i.e. controls which avoid collisions to the best of

the robot’s ability, we require that the robot’s movements be subject to a cost which

increases as the robot approaches an obstacle. Given such a cost function, we

generate an optimal control policy. In this framework, an optimal control is a safe

control.

Many techniques have been developed for synthesizing (approximately) optimal

feedback control inputs/actions in the control and robotics literature. Informally,

2See [14] for a survey of early progress in intelligent wheelchairs.
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we seek progression to a prescribed state with minimal cost and a smooth input

sequence. This can often be accomplished for systems with linear dynamics and

quadratic cost functions (or problems which can be reasonably approximated in that

manner). However, the dynamics of a powered wheelchair are distinctly nonlinear,

and a cost function which depends on cluttered obstacles will be significantly more

complex than a simple quadratic. Hence, our requirement for safety gives rise to

nonsmooth feedback controls.

1.3 Navigation with Value Functions
The uncertainty in future state makes it important to plan via feedback control and

not open loop: since we cannot know future states, we cannot plan a sequence of

optimal actions ahead of time. One method for optimal feedback control is the use

of value functions.

A feedback control requires us to define a navigation function over the robot’s

configuration space. A navigation function is a function from state space to control

space, π : X →U . For each state in the state space, it gives an appropriate action,

so the robot can make progress toward the goal from wherever it happens to find

itself. For optimal control, the navigation function can be efficiently derived from

the value function.

The value function returns the minimum cost to go to the goal from any given

state. As we will explain in Chapter 3, these functions can be constructed as the so-

lution to a dynamic programming problem. As our cost functions from the previous

section are potentially nonconvex and nonsmooth, so too is the value function. The

optimal action is to take the action which results in the maximum decrease in this

function; i.e., to follow the direction of steepest descent. Thus, our solution to this

problem amounts to steepest descent on a nonsmooth, nonconvex function—albeit a

special class of nonconvex functions with a single global minimum, thus not having

the possibility of converging to a local minimum.

1.4 An Example
In order to illustrate this challenge, consider the narrow corridor scenario shown

in figure 1.1. For simplicity, we work with an isotropic, holonomic vehicle in the

3



Figure 1.1: Narrow corridor example. Top: Obstacles are gray, the goal
location is a blue circle. Middle: Contours of the value function. The
corresponding cost function penalizes states near the walls. Bottom:
Vector field of the gradients of the value function (on a subsampled grid
for visibility). All gradients in the corridor have a rightward component,
but there is an abrupt jump between upward and downward components.

plane: It can move in any direction at some bounded maximum speed. The vehicle

is trying to reach a goal location on the right side of a narrow corridor. The objective

is to minimize path length, but for safety purposes we penalize states that are close

to the walls. To solve the scenario, we approximate a minimum time to reach

value function in the obstacle free space, and then the resulting optimal feedback

controller follows the gradient of the value function.

The first problem arises even with numerical simulations where we know the

exact state: Chattering of the optimal control as illustrated in figure 1.2. A typical

cyber-physical control system for vehicles and robots operates on a loop in which

new control signals are generated at roughly periodic time intervals. If the control

signals arise from gradients of a value function, this approach is mathematically

4



Figure 1.2: Narrow corridor example paths. Every figure is overlayed with
contours of the value function, and markers are placed along the trajectory
at each step. Top: Fixed stepsize path. Middle: Adaptive stepsize
path from MATLAB’s ode15s (an implicit scheme). Bottom: Sampled
gradient path.

equivalent to fixed stepsize gradient descent (essentially forward Euler integration)

and gives rise to significant chattering. A naive response is to use a variable stepsize

integrator such as MATLAB’s ode23 or ode45. It turns out that they can generate

decent paths, but require an unreasonable number of tiny steps. Those familiar

with numerical integration will immediately diagnose stiffness as the problem, and

prescribe an implicit integrator such as MATLAB’s ode23t or ode15s. They take

fewer steps but require much longer to run because they still generate many tiny

steps in parts of the domain where the optimal path is straight. In fact, the problem

arises because the value function is (nearly) non-differentiable along the center of

the corridor, and consequently the gradient is (nearly) discontinuous precisely where

the optimal path lies. Put another way, the gradient descent differential equation is

not just stiff in a normal sense, but infinitely so. Figure 1.2 also illustrates how our
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Figure 1.3: State uncertainty, as represented by samples from a (simulated)
particle filter. Figure shows a zoomed in view of the left side of the
corridor scenario from figure 1.1. Each dot is a state sample, and the
attached arrow shows the optimal action for that sample. Depending on
which sample most accurately represents the actual state, the optimal
action could be in any direction.

proposed approach generates a much more desirable solution with large stepsize

and accurately optimal path.

The second problem arises in physical systems in which the state is not accu-

rately known. Figure 1.3 shows a commonly used non-parametric representation

of state uncertainty called the particle filter: Each point represents a possible state

of the system. Every direction of the compass is covered by at least one particle’s

optimal action. The typical mechanism for choosing an action—extract the mean

state or most probable state and use the corresponding optimal action—will choose

one of these actions and will not even recognize that any action may be counter-

productive. In fact, the system should refine its state estimate if possible before

choosing an action.

With these two problems in mind, the contributions of this thesis are to show:
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• How the simple gradient sampling algorithm [8] borrowed from nonsmooth

optimization can easily be combined with a standard particle filter representa-

tion of state uncertainty.

• That the resulting algorithm can at each step generate a productive action

choice which takes into account current state uncertainty or determine that no

such action exists.

• That the resulting action choices nearly eliminate the chattering often ob-

served over multiple steps when using gradient descent based path planners.

We illustrate its success in simple simulation with figure 1.2, but more impor-

tantly we illustrate its success in a full scale robotic simulation with state uncertainty

and simulated noisy sensors and motion, using the widely adopted Robot Operating

System (ROS) / Gazebo environment.

The algorithm does give rise to one undesirable behavior: it tends to steer toward

not just minima of the value function but any stationary point, including saddle

points. Consequently, we propose a procedure for categorizing whether a stationary

point is the desired minimum and discuss two approaches to resolve saddle points.

A pleasant side-effect of the categorization algorithm is automatic determination

of whether the goal has been reached to the degree possible given the current state

uncertainty. Finally, we demonstrate that our algorithm is easily adapted to use

other underlying optimal planners, such as RRT*.

7



Chapter 2

Related Work

The problem of “robustness to uncertainty” is broad and can be tackled in many

ways. Under this umbrella there exists everything from very general mathematical

formalisms to highly domain-specific solutions to a narrow aspect of the problem.

The Gradient Sampling with Particle Filter (GSPF) algorithm sits somewhere in

between these two extremes, providing robustness to a very general set of systems

and uncertainty, but with assumptions that limit its applicability in exchange for

remaining tractable. It is a relatively uncomplicated way to account for existing

state uncertainty and produce more stable paths, but does not attempt to model

future uncertainty.

2.1 Types of Uncertainty
There are many sources of uncertainty in real-world robotic planning, often grouped

into three main categories [42]:1

• Motion uncertainty

• Environmental uncertainty

• Sensing uncertainty

Motion uncertainty is non-determinism in the robotic control system. It is an

expression of the fact that the next state is a stochastic function of the current state
1Sometimes the second category is split to create a total of four groups, as in [18].
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and the control. Even when the current state and control are perfectly known, future

robot states cannot be exactly predicted.

The future state of the environment around the robot is similarly non-deterministic.

This is the result of the many possible forms of environmental uncertainty: our prior

maps of the environment may not be exact; other objects in the environment may be

subject to motion uncertainty; there may be other agents in the environment who

operate under unknown motion models or whose controls we cannot observe.

Sensing uncertainty is non-determinism in the observation function. It con-

tributes uncertainty to both the state of the robot and the state of the environment.

When taken together with the first two types of uncertainty, the result is that not

only can the state not be predicted in the future, it cannot even be observed at the

present time.

2.1.1 Selective Focus

Work which addresses planning under uncertainty may sometimes only address one

or two of these categories. For instance, works which address adversarial games [33]

or navigation among pedestrians [13, 38] often focus only on the uncertain intention

of their opponent (i.e. environmental uncertainty).

More commonly, motion and sensing uncertainty are considered together, but

environmental uncertainty is ignored. This is because many works assume a static

world with an accurate map; in this case, the only uncertainty is in the state of the

robot (the sources of that uncertainty being motion and sensing).

This is even the case for implementations of the very general Partially Ob-

servable Markov Decision Process (POMDP) model, since many POMDP solutions

assume the cost and transition functions are time-invariant, which is only true under

a static environment. Some attempt to get around this by computing a policy over the

belief state of the entire environment, but this is impractical for all but the smallest

environments, such as the Tag example in [28] or the intersection example in [2].

An exception is online POMDP solvers, which can update their policy according to

new observations and beliefs [31], but these still have the difficulty of representing

all possible observations (and thus all possible evolutions of the environment) which

could occur from the current belief state.
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2.1.2 Where This Work Fits

GSPF can deal with motion and sensing uncertainty, by sampling from the state

estimate. The formulations demonstrated in this thesis cannot deal well with envi-

ronmental uncertainty, because the underlying planners assume a static environment

and are not well-equipped for fast replanning. However, if given a planner with

that capability, then the gradient sampling method would naturally accommodate

it. Recent work in high-frequency replanning shows that some highly parallelized

planners may be fast enough to introduce some robustness to dynamic obstacles [34].

2.2 Types of Robustness
In addition to there being many types of uncertainty to be robust to, there are

many different ways that one can be robust. One might minimize the probability

of collision, or maximize the probability of success. One might minimize some

cost; this could be the expected cost, or the nominal cost, or the cost subject

to some chance constraints on the probability of collision. Or one may simply

minimize uncertainty directly, with hope of enabling traditional collision avoidance

approaches.

2.2.1 POMDP Solvers

Minimizing the expected cost of a policy is a common approach. This is the

objective of the general POMDP formulation. The general applicability of POMDPs

makes them very attractive, but they are also known to be PSPACE-complete (and

thus very unlikely to be solvable in polynomial time) [26]. While there have been

significant advances in making POMDPs tractable by sampling beliefs [2, 28], to

our knowledge there is not yet any solution which can be applied in real-time

(replanning multiple times per second) to continuous state and action spaces—a

prerequisite to employing the technique in robotics.

There has, however, been some promising recent work in online and real-time

POMDP solvers. Monte Carlo Tree Search within the belief space has enabled online

solvers in large state spaces [33], but is yet to be applied to robotic applications

or continuous action spaces. More recently, a similar concept called an Adaptive

Belief Tree was combined with Generalized Pattern Search to enable the use of

10



continuous action spaces, and although it is not quite as fast as we would like, the

initial results are very promising [32]. Similarly to our method, both of these can be

applied using only a black-box simulator of the robotic system, and do not require

representing the full transition or observation probability densities. Like real-time

performance, this is another essential practicality which many POMDP solutions

lack—essential because enumerating or even sampling from the space of possible

observations is very difficult.

2.2.2 Other Approaches

In the absence of the ideal POMDP solver, there have been a plethora of alternative

methods of varying applicability. Some even boast features that are not enabled

by POMDPs, such as directly maximizing the probability of success [34]. Others

are slightly more limited, minimizing expected cost subject to an upper bound on

probability of collision [1, 9, 12]. Still more limited are the methods which only

minimize expected cost, with no estimation on probability of collision; this includes

most methods based on Linear Quadratic Gaussian (LQG) control, e.g. [35, 41].

Moving on from there, there have been methods which minimize the cost of the

nominal trajectory and then attempt to track this trajectory, rather than minimizing

the expected cost of a feedback policy [21, 22] (although [22] does admit modeling

risk in the objective function, something that is not often permitted). Alternatively,

LQG-MP [40] does not optimize the cost directly, but is able to choose the plan

with lowest probability of collision from a set of candidate plans.

Some methods minimize the state uncertainty directly, rather than having this fall

out naturally as a side effect of minimizing expected cost. The Bayesian framework

presented in [9] can minimize uncertainty while keeping task time bounded, or

minimize time while keeping uncertainty bounded. Belief Road Map [29] does not

bound or minimize covariance over the whole trajectory, but it can minimize final

covariance.

As methods vary in their attack on uncertainty, so do they vary in their assump-

tions and limitations. It is common to address only Gaussian beliefs [1, 5, 9, 12, 27].

Many methods are designed specifically for linear systems, or linear-quadratic, or

linearized-quadratic [21, 22, 34, 40, 41]. Some methods are based on tracking a

11



nominal trajectory, and if they deviate too far from the nominal plan their policy

may no longer be applicable [5]—this includes most of the LQ methods as well.

Similarly, some methods perform local optimizations on a nominal plan, and cannot

claim to be globally optimal [27, 41].

Certain methods operate on discrete space/observations only [28]. BU-RRT*

[21] requires polytopic obstacles. It also requires knowing and modeling of all

uncertainties present in the environment, as do many POMDP solvers [2, 28] (because

they need to be able to fully enumerate transition and observation probability

densities).

2.2.3 Comparison To This Work

GSPF does a bit more than minimizing the cost of a deterministic trajectory—at

each step, it takes the state uncertainty into account to guarantee progress. We have

a mechanism to identify when uncertainty is too large to guarantee progress, and to

attempt relocalization in that event. In this way, the system localizes to the extent

necessary to reach the goal, but otherwise does not explicitly work to minimize or

bound uncertainty.

Although not intentional, GSPF does something very similar to Q-value Markov

Decision Process (QMDP) [20, 31]. QMDP is a POMDP approximation which as-

sumes that all partial observability will disappear after a single step. The current

state uncertainty and the motion uncertainty are represented, but it is assumed that in

the next step the state will be perfectly known. Likewise, in GSPF the action chosen

for each particle is optimal assuming that further evolution is deterministic, so the

GSPF consensus direction likewise incorporates the assumption of deterministic

future evolution. Because they do not consider partial observability, neither method

is capable of information-gathering actions which may help reduce uncertainty, al-

though GSPF is capable of identifying when the uncertainty is too large to guarantee

progress.

QMDP resolves conflicting actions by choosing the one with the highest expected

value (where the expectation is run over only the current belief state). This typically

requires discrete state and action sets so that this optimization can be performed

efficiently. GSPF, on the other hand, is framed around a continuous action space,

12



and in fact requires continuity of the actions and the value function. Rather than

the maximum expected reward, we choose an action which guarantees a positive

reward. This favors choosing actions safely over choosing actions greedily.

13



Chapter 3

Problem & Background

At a high level, we seek to choose a sequence of direction commands which will

navigate a robot from its current location to a known goal location in a known

map. Although the robot is able to move in any direction, the problem is non-trivial

because the map contains obstacles which must be avoided. Furthermore, the robot

is unsure of its current position, may not move exactly as commanded, and receives

noisy sensor information from which it must estimate its position and movement. A

very common approach to solve this problem is to plan deterministically optimal

paths, track state uncertainty online, but then choose the action which is determinis-

tically optimal for some single possible state. Such an approach can be theoretically

justified by the separation principle for linear time-invariant systems with Gaussian

noise [3], but most mobile ground robots and their sensors are highly nonlinear so

the widespread adoption of this pipeline is due to its ease of implementation and

frequent experimental success (modulo the chattering issue mentioned earlier).

In this chapter we outline the elements of our optimal navigation pipeline, and in

the next chapter we will show how these elements can be naturally integrated. The

individual elements are common robotic tools, but are not typically used together.

We track uncertainty with the popular particle filter representation. Optimal actions

are chosen by gradient descent on a value function approximation. These two

elements will be unified by the gradient sampling algorithm from the non-smooth

optimization literature, which is also described in this chapter.
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3.1 Problem Formulation
Our goal is to navigate the robot through the state space Ω to some compact target

set T ; we present results for Ω⊆R2, but it is straightforward to extend the approach

to higher dimensions. We seek paths x(·) : [t0, t f ]→Ω that are optimal according to

an additive cost metric

ψ(x0) = inf
x(·)

∫ t f

t0
c(x(s)) ds, (3.1)

where x(0) = x0, x(t f ) ∈T and x(·) are drawn from the set of feasible paths such

that x(t) ∈Ω\T for t0 ≤ t < t f . The value function ψ(x) measures the minimum

cost to go from state x to T (this cost may not be achievable, but paths whose costs

are arbitrarily close to ψ(x) exist). The cost function c(·) is assumed to be strictly

positive and Lipschitz continuous.

The optimal solution of (3.1) depends on the feasible paths. Here we will

assume only the simplest form of isotropic holonomic dynamics

d
dt x(t) = ẋ(t) = u(t), (3.2)

where ‖u(t)‖ ≤ 1 (all norms are assumed to be Euclidean ‖ · ‖ = ‖ · ‖2 unless

otherwise specified). We assume the input signal u(·) is measurable and hence x(t)

is continuous.

3.2 Planning with a Value Function
The value function (3.1) satisfies a dynamic programming principle and can be

shown to be the viscosity solution of the Eikonal equation (for example, see [39])

‖∇ψ(x)‖= c(x), for x ∈Ω\T ;

ψ(x) = 0, for x ∈T .
(3.3)

Under the dynamics (3.2), the viscosity solution ψ(x) of (3.3) is continuous and

almost everywhere differentiable. The only local minima of ψ(x) occur at T , but

the function will usually be non-convex: it can have saddle points in Ω\T and local

maxima at boundaries of Ω which are not also boundaries of T . It will typically

not be differentiable at these critical points, as well as on other lower dimensional
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subsets of the domain.

Except on simple domains Ω and for simple cost functions c(x), it is not

practical to find the viscosity solution of (3.3) analytically; however, there exist

many efficient approaches to approximate it; for example [11, 16, 19, 39]. In

order to handle complex domains and cost functions, approximations are generally

constructed on a discrete grid.

Given the value function, the optimal state feedback action is easily extracted

u∗(x) =
∇ψ(x)
‖∇ψ(x)‖

. (3.4)

Consequently, generation of an optimal path is equivalent to gradient descent of

ψ(x). Of course we typically cannot represent the exact solution of (3.2) and (3.4)

either, so we seek an approximate path in the form of a sequence of waypoints

{x(ti)}i for some sequence of timesteps t0 < t1 < t2 < · · ·< t f and some initial x0.

A common approach is essentially a forward Euler integration with fixed timestep

∆t
ti+1 = ti +∆t,

x(ti+1) = x(ti)+∆tu∗(x(ti)).
(3.5)

Unfortunately, a straightforward implementation of (3.5) to generate paths from

the value function (or even a fancier implementation with adaptive stepsize) falls

prey to the well-established problem with gradient descent (as illustrated in the top

two subplots of figure 1.2): The resulting paths chatter or take many steps to achieve

the optimum. This outcome is not surprising, since the optimal paths often proceed

down the middle of steep-sided valleys in the value function, and in these valleys the

value function displays the large disparity in curvature that causes gradient descent

such problems. In fact, the value function may not be differentiable there, so the

gradients change discontinuously and the disparity in curvature is infinite.

A further complication arises because ψ(x) and hence ∇ψ(x) are approximated

numerically. The numerical algorithms will typically return an approximation of

∇ψ(x) even at values of x where the true ψ(x) is not differentiable, and more

generally the approximate values of ∇ψ(x) may be inaccurate near these regions

where differentiability fails.
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3.3 State Estimation with Particle Filters
The particle filter is a popular technique for state estimation or localization of

systems with nonlinear dynamics and/or sensor models. We focus on a version

commonly used in robotics called Monte Carlo Localization (MCL) [36]. The state

estimate is represented by a collection of weighted samples {(w(k)(t),x(k)(t))}. This

estimate is updated by predictions whenever the system state evolves and corrections

whenever sensor readings arrive, typically in an alternating iteration. Predictions

update only the state component by drawing a new sample

x(k)(ti+1)∼ p(x(ti+1) | x(k)(ti),u(ti)), (3.6)

where p(x(ti+1)|x(ti),u(ti)) is the probability distribution over future states given

past state and input; in other words, the dynamics (3.2) plus some motion noise.

Corrections update only the weight component by multiplication

w(k)(ti+1) = p(sensor reading | x(k)(ti+1)) w(k)(ti),

where p(sensor reading|x(k)(ti+1)) models the probability of seeing the sensor read-

ing given the particle’s current state.

In MCL the particle representation is also regularly resampled, typically after

each sensor reading. During resampling, a new collection of particle locations is

drawn (with replacement) from the existing locations with probability proportional

to the existing particles’ weights, and the weights are all reset to unity. In the

remainder of the paper we will work with the state estimate only after resampling,

so we assume unit weights.

3.4 The Gradient Sampling Algorithm
It is well known that gradient descent performs poorly on nonsmooth optimization

problems, and many algorithms have been proposed to overcome its limitations.

Here we draw inspiration from the gradient sampling algorithm [8], which is

designed to generate a sequence of high quality linesearch directions despite the

presence of discontinuous and/or poorly approximated derivatives in the objective

function.
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The basic algorithm is given a function ψ and a starting point x(0), and aims

to efficiently locate a minimum of the function. In each iteration starting at the

current point x(t), it seeks to choose a point x(t + 1) in a way that guarantees

descent
(
so that ψ(x(t+1))≤ψ(x(t))

)
. For a differentiable function this is trivially

achieved by performing a line search in the direction of the negative gradient to find

an appropriate step size γ(t):

x(t +1) = x(t)− γ(t)
∇ψ(x(t))
‖∇ψ(x(t))‖

.

However, as we have mentioned before, we are interested in value functions which

are not differentiable everywhere. This can be addressed through the use of the

generalized gradient, also referred to as the Clarke subdifferential. Informally, the

Clarke subdifferential is the compact set of directions of maximum descent from

a given point. It can be defined in terms of the convex hull of gradients in the

neighborhood around a point x̄ ∈ Rn

∂Cψ(x̄) = conv{lim
r

∇ψ(xr) : xr→ x̄,xr ∈ Q}

where Q is a full-measure subset of points in the neighborhood of x̄ which are

differentiable. See [10] for a full exposition.

Given the set ∂Cψ(x̄), we can use any vector in this set as a valid direction of

descent, and perform a line search as in the steepest descent case. However, this

set is difficult to compute. We can instead approximate the generalized gradient by

taking a sampling of gradients in the same neighborhood [7]. This is the key idea in

the gradient sampling algorithm.

The algorithm takes a sampling of gradients at points within a radius ε ,

x(k)(t) = x(t)+ ε δx(k), (3.7)

p(k)(t) = ∇ψ(x(k)(t)) (3.8)

for k = 1, . . . ,K, where {δx(k)} are sampled independently and uniformly from the
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Figure 3.1: Finding a “consensus” among different actions. Left: Gradient
vectors (yellow) shown at the corresponding samples’ locations, and
the resulting consensus action (red). In this neighbourhood, the value
function has a ridge. Right: The gradients (yellow) plotted in gradient
space, their convex hull (blue) and p∗(t) (red). The consensus action is a
leftward movement, which is a descent direction for all samples.

unit ball. Next, the algorithm computes the generalized gradient approximation,

P(t) = conv{p(1)(t), . . . , p(K)(t)}.

The algorithm chooses the point with the minimum norm

p∗(t) = argmin
p∈P(t)

‖p‖2 (3.9)

The authors of [8] cite a desire to be conservative in making this choice, as well as

the ability to prove convergence under this choice.

Thus, the direction p∗(t) is a consensus direction: a direction of descent from

all samples x(k)(t). Any rescaling of p∗(t) is also a consensus direction. Most

importantly, it can easily be found by solving a simple convex quadratic optimization

problem. The technique is illustrated in figure 3.1.

If ‖p∗(t)‖= 0, there is a Clarke ε-stationary point—conceptually a local mini-

mum, maximum or saddle point—somewhere within the ε-ball around x(t), and no
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direction can be agreed upon by all samples. In this case the radius ε is reduced and

a new sample set (3.7)–(3.8) is obtained.

Otherwise, the algorithm performs an Armijo line search along the vector given

by p∗(t) to determine an appropriate step length s, and the update is given by

x(ti+1) = x(ti)− s
p∗(t)
‖p∗(t)‖

(3.10)

The algorithm terminates when ε shrinks to a predetermined threshold. When

paired with a linesearch procedure that ensures sufficient descent, such as Armijo,

it is shown to converge to a Clarke stationary point under suitable conditions.

When we repurpose this algorithm to path planning, we will have to deal with the

possibility of arriving at a stationary point which is not the desired minimum.
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Chapter 4

Gradient Sampling with Particle
Filter

The basic gradient sampling algorithm can generate a path for simulations, visualiza-

tions, and other situations where the initial condition x0 is known, the dynamics (3.2)

are accurate, and the chosen input (3.4) is accurately implemented. Unfortunately,

for most robotic systems these assumptions do not hold. In this chapter we consider

how the algorithm can be adapted to the case where x(t) can only be estimated.

4.1 Gradient Sampling with State Uncertainty
The state estimate representation used by particle filters suggests a natural adapta-

tion of the gradient sampling algorithm: Instead of choosing the gradient sample

locations with (3.7), use the particles’ locations (3.6) directly. We call this version

GSPF, and outline its key properties in the following propositions.

Proposition 1. If the solution p∗(t) of (3.9) is such that ‖p∗(t)‖ 6= 0, then p∗(t) is

a descent direction in the value function for all particles.

Proof. A direction d is a descent direction at point x if and only if dT p(t) < 0,

where p(t) is the gradient of the value function at point x(t). The descent direction

chosen by GSPF will be d = −p∗(t). So to produce a descent direction for all

particles, we must show that p∗(t)T p(k)(t)> 0, ∀i ∈ {1, . . . ,K}. In other words, the

minimum norm convex combination of gradients forms an acute angle with every
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c = b - a

Figure 4.1: The minimum norm direction p∗(t) must form an acute angle with
every point in the convex hull in order to be a direction of descent for all
particles. We show that if this is not the case for a potential solution a,
then a must not be minimum norm.

particle’s gradient. We will prove the stronger property that the minimum norm

choice forms a descent direction with not just any single particle, but any convex

combination of particles: p∗(t)T p > 0, ∀p ∈ P(t).

For simplicity of notation, let a be the proposed solution to (3.9), and let b ∈ C

be any convex combination of gradient samples:

C =
{

∑
k

λk p(k)(t) : ∑
k

λk = 1, ∀k : λk ≥ 0
}
.

To be the true solution, the proposal a must have the minimum norm:

a = argmin‖a′‖ ∀a′ ∈ C .

We will show that a must have a positive dot product with all gradient samples,

because if it did not, then there would be a choice with a smaller norm:

aT b≤ 0 =⇒ ∃a′ ∈ C : ‖a′‖< ‖a‖. (4.1)
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Note that since the minimum norm p∗(t)> 0, the magnitudes of all vectors in

the convex combintation must be greater than zero: ‖a‖> 0 and ‖b‖> 0.

Let c = b−a and D = {(1−λ )a+λb : λ ∈ [0,1]}. Note that D ⊂C (by virtue

of convexity, all points on the line segment between a and b are within the convex

hull).

Let a1 be the projection of a onto c.

a1 =
aT c
cT c

c

=
aT (b−a)

(b−a)T (b−a)
(b−a)

=
aT b−‖a‖2

‖a‖2 +‖b‖2−2aT b
(b−a)

Let ρ =
aT b−‖a‖2

‖a‖2 +‖b‖2−2aT b

So a1 = ρ(b−a) (4.2)

Let a2 be the rejection of a from c.

a2 = a−a1

= a−ρ(b−a)

= (1+ρ)a−ρb

By Pythagoras, we have:

‖a1‖2 +‖a2‖2 = ‖a‖2

=⇒‖a2‖2 = ‖a‖2−‖a1‖2

=⇒‖a2‖< ‖a‖ if ‖a1‖> 0 (4.3)

Now we have that a2 is a vector which lies somewhere on the line passing

through a and b. If we let λ = −ρ as defined by equation 4.2, we note it has the

23



same structure as our set D :

a2 = (1+ρ)a−ρb

= (1−λ )a+λb

Expanding this choice of λ ,

λ =−ρ =
‖a‖2−aT b

‖a‖2 +‖b‖2−2aT b
(4.4)

we can see that if aT b≤ 0 then the above quantity is positive. We can also see the

denominator is strictly greater than the numerator. Therefore, 0 < λ < 1, which

places a2 within the set D .

Referring back to equation 4.2, and the fact that ‖a‖ > 0 and ‖b‖ > 0 and

aT b ≤ 0 =⇒ ρ 6= 0, we can also see that ‖a1‖ > 0. Therefore, by equations 4.3

and 4.4, we have demonstrated our assertion 4.1: specifically, we have shown that

a2 ∈ C and ‖a2‖< ‖a‖, so a is not the minimum norm in the convex hull C and

our leading assumption that p∗(t) = a cannot be true if there exists a b such that

aT b≤ 0.

The particle gradient samples are within the convex hull, so the property which

holds for b holds for them as well: the minimum norm choice must be a descent

direction for all.

Proposition 2. If the solution p∗(t) of (3.9) is such that ‖p∗(t)‖ = 0, there is no

direction which is a descent direction for all particles.

Proof. We will propose that there is some direction d which is a direction of descent

for all gradient samples, and draw a contradiction showing this cannot be the case.

Let the chosen direction d be the opposite of some gradient combination such that

−d = a ∈ C . Assume that aT p(k)(t)> 0, ∀k ∈ [1,K].

Since (0,0) is one of the points in the set C , we know there is some setting of
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λ1, . . . ,λK such that ∑k λk p(k)(t) = (0,0). Call this point b. Therefore,

aT b = ∑
k

λkaT p(k)(t) = 0.

All λk are nonnegative and at least one must be positive. Without loss of generality,

consider all terms where λk > 0; there will be at least one such term, and they will

sum to 0. Therefore either aT p(k)(t) = 0 for all such terms, or at least one term

satisfies aT p(k)(t)< 0. Thus, a contradiction: we cannot have aT p(k)(t)> 0, ∀k ∈
[1,K]. There is no choice of a which results in a descent direction for all particles.

4.1.1 Contrasting Gradient Sampling and GSPF

We note that in GSPF, we do not have direct control over the step length s; instead,

the step length is implicitly determined by how long (ti+1− ti) the system evolves

before the particle filter is again resampled. This choice implicitly replaces (3.10)

with

x(ti+1) = x(ti)+(ti+1− ti)
(

p∗(t)
‖p∗(t)‖2

)
.

It is straightforward to modify the probability distribution in (3.6) to take this

change into account. From a theoretical point of view, the goal of the Armijo line

search which provided the step size in the basic algorithm was to ensure a sufficient

descent condition, which is then used in the proof of convergence to Clarke ε-

stationary points of the value function. Assuming that resampling occurs sufficiently

often, it should be possible to ensure a similar sufficient descent condition in the

GSPF, but that by itself will not rescue the convergence proof because we have also

replaced (3.10) with (3.6). Whether or not the convergence theorem still holds,

GSPF appears to converge to stationary points in practice.

4.2 Classifying and Resolving Stationary Points
Adapting gradient sampling to the case where the system state is estimated by a par-

ticle filter is straightforward, but we no longer have direct control over the sampling

radius ε and so we must devise an alternative termination criterion. Furthermore,
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the gradient sampling algorithm converges to stationary points of any kind, but we

seek a local minimum (which by construction (3.3) is guaranteed to be a global

minimum and occur at the target set); consequently, we must devise a mechanism

for escaping stationary points which are not local minima.

Fortunately, we do have indirect control over our sampling radius: We can

perform more sensor updates (and resamplings) in the hope that the spread of the

state estimate is reduced with the introduction of more observations. In Chapter 5

we simulate a robot which can choose to use either a low or high precision sensor,

and which would prefer to use the low precision version whenever possible to

conserve power. Similar multi-tiered sensing solutions may include cases where

multiple sensors are available but not always deployed, or where the robot could

re-orient a sensor with a limited field of view.

4.2.1 Stationary Points Classification

Before going to the trouble of gathering additional sensor readings, we should first

determine whether a stationary point is a desirable minimum or an undesirable

saddle point or maximum. To do so, we will locally approximate the value function

as a quadratic

ψ̄(x) = 1
2(x− xc)

T A(x− xc)+bT (x− xc)+ c (4.5)

in the neighborhood of the particles, where xc is the center of curvature and matrix

A is symmetric. Rather than fitting the value function directly, we fit the gradient of

the quadratic approximation

∇ψ̄(x) = A(x− xc)+b (4.6)

to the set of gradient samples {p(k)(t)} that we have already collected (3.8). In our

implementation, we set xc to be the mean of the particle locations {x(k)(t)}, use

least squares to fit A and b, update xc = A−1b, and refit A and b (at which point b is

very close to zero). The resulting matrix A is an approximation of the Hessian of

the value function in the neighbourhood of the stationary point.

We note in passing that quasi-Newton optimization algorithms, such as BFGS,
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also approximate the Hessian of the objective function [24]. Such algorithms are

designed to construct their approximation efficiently in high dimensions using a

single objective function sample from each of multiple steps. In our case we wish to

approximate a low dimensional Hessian which takes into account information from

all of the current particles and only the current step, so we find the least squares

fit described above more efficient and appropriate than an adapted quasi-Newton

update.

If the stationary point is a minimum, A will be positive definite. Algorithmically,

we compute the eigenvalues of A (relatively inexpensive for the low to moderate

dimensional systems in which we are interested) and declare victory if they are all

positive. If there are negative eigenvalues, then we can attempt to improve the state

estimate through additional sampling (as described above) and thereby escape the

stationary point.

4.2.2 Resolution by Eigenvector

In practice, improved sensing is not always available or is insufficient to resolve

undesirable stationary points. Fortunately, the eigenvalue decomposition of the

Hessian A also provides us with an alternative method to determine a reasonable

action. Each eigenvector v corresponding to a negative eigenvalue of A is locally a

direction of descent for the value function. By proposition 2 there is no consensus

direction of descent for all particles, but we can choose some direction from among

these eigenvectors in the hope of escaping the stationary point.

If there is only a single negative eigenvalue (which must be the case at a saddle

point in 2D) with corresponding eigenvector v, there are only two descent directions:

v or −v. A simple voting procedure can determine which of these the majority of

the particles prefer. Let

α =
K

∑
k=1

sign(−vT p(k)).

If α < 0 we travel in the direction of −v, otherwise we travel in the direction of +v.

Figure 4.2 illustrates this procedure. If multiple eigenvalues of A are negative, one

could use the simple voting procedure on the eigenvector associated with the most

negative eigenvalue, or one could devise a more complex procedure for searching
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Figure 4.2: Using a quadratic approximation to resolve a saddle point. In both
plots gradient samples from an area where there is a saddle point are
shown in yellow. Left: Gradient vectors shown at their corresponding
particle locations and the eigenvectors of the local Hessian approximation
(blue). The vectors pointing inward correspond to a positive eigenvalue,
while those pointing outward correspond to a negative eigenvalue. The
action chosen (red) is upward, because more gradient samples agree with
this sense of the eigenvector corresponding to the negative eigenvalue.
Right: Gradient vectors shown in gradient space and their convex hull
(blue). The convex hull contains the origin so there is no consensus
direction.

over the space spanned by the eigenvectors associated with all of the negative

eigenvalues to find a direction favorable to more of the particles.

4.2.3 Other Failures to Achieve Consensus

In practice, there are scenarios which do not achieve consensus, and yet are not

straddling stationary points. An example is shown in the “Hallway Entrance”

example of Section 5.3: near the entrance to a hallway, it is possible for gradients

to span more than 180◦—but there is no stationary point anywhere in this example.

Thus, we cannot assume that lack of consensus signifies a stationary point.

Therefore, before we take action based on the quadratic approximation, we must

determine if the results are sane. We do this by checking if the center of curvature
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of the quadratic approximation (xc from equation 4.5) is within the convex hull of

the particles. If the quadratic’s center is not in the span of the particles, then it is

likely not a stationary point as we were expecting. In this case, we do not use the

eigenvalues of the quadratic to determine descent direction, and we must relocalize

if we hope to continue.
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Chapter 5

Experiments

To test GSPF in as realistic an environment as possible in silico, we use the MCL

particle filter implementation found in ROS [30], and hook it to Gazebo [17] to

simulate the robot’s (noisy) motion and sensor systems. We have modified the

original MATLAB code from [8] to accept the particle locations as the sample

locations, and communicate with ROS through MATLAB’s Engine API for C++. For

convenience, we construct the value functions using a transformation of (3.3) to

a time-dependent Hamilton-Jacobi PDE [25] that is easily solved using existing

software [23, section 2.7]. Given the value function approximation, we approximate

the gradients numerically at the nodes of the grid using (upwind) finite differences,

and then (linearly) interpolate these approximate gradients to states which are not on

the grid. The value function and gradient approximations are currently constructed

offline.

In each of the following examples, we simulate a holonomic disc robot with

a sweeping single-beam LIDAR range sensor. The robot can travel equally fast

in any direction in the plane. The sensor has a 260◦ horizontal field of view. We

can simulate either a low precision (noisier) or high precision version of the sensor.

Unless otherwise specified, the high precision version of the sensor is used.

In all figures that depict paths taken by the robot, both the ground truth trajectory

(green solid lines) and state estimate (blue stippled lines) are shown. The “state

estimate” is the value returned by the MCL implementation, which is usually the

mean of the particles’ locations (precisely, it is the mean of the dominant cluster,
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Figure 5.1: Single obstacle scenario. Left: Costmap, with costs ranging from
low (blue) to high (red). Costs are highest near the outer boundary of
the domain and near the obstacle. Right: Contours of the resulting value
function. Stationary points are the minimum at the goal (−2.0,0.0) and
the saddle point on the east side of the obstacle (0.9,0.0). The horizontal
ridge running through this saddle point is the decision boundary between
going north or south around the obstacle.

and most of the time there is only one cluster).

5.1 Single Obstacle
Our first example has only a single symmetric obstacle, and is used to demonstrate

the main features of the GSPF. The robot must travel around the obstacle from east

(4.0,0.2) to west (−2.0,0.0) while avoiding a saddle point. Figure 5.1 illustrates

the scenario.

The robot starts by using the noisier sensor and an initial state estimate with

large covariance. The optimal deterministic path goes northwest around the obsta-

cle, but this cannot be determined from the noisy state estimate, which straddles

the north/south decision boundary. The GSPF identifies that west is a consensus

direction, so the robot moves that way. The state estimate improves, but not enough

to resolve the choice between north and south; consequently, the system encounters

the saddle point. As explained in section 4.2, an approximate local Hessian is

constructed and the presence of positive and negative eigenvalues identifies the
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Figure 5.2: The single obstacle example using two different stationary point
resolution methods (zoomed to show only the relevant portion of the
domain). Top: Improved localization. Bottom: Eigenvector voting. Ten
trials of each are shown.

stationary point as a saddle. Two approaches to resolve such undesirable stationary

points were proposed, and we illustrate both in figure 5.2 and below.

To demonstrate improved localization, we switch to the high precision version

of the range finder and perform MCL sensor corrections (and resampling). Figure 5.3

shows how the covariance of the state estimate drops in one of the trials as these

improved corrections are incorporated, until finally a consensus direction emerges

(when the particles all end up on the north side of the decision boundary) and the

robot escapes the saddle.

For resolution by eigenvector, we keep the noisy sensor. When we identify the

saddle point, we examine the eigenvectors of the approximate Hessian. The particles

vote on the direction of the eigenvector associated with the negative eigenvalue with

which they most agree. The majority votes to go north, allowing escape from the
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Figure 5.3: Covariance of the particle cloud and the consensus action direc-
tion as a function of time for a single run of the improved localization
approach. The covariance of the state distribution decreases as we move
west (θ ≈ 3.14 rad) until we get stuck on the saddle point (the grey
shaded segment). Covariance further decreases as we take new obser-
vations from the improved sensor. We see a sudden change in direction
(θ ≈ 1.57 rad) when the covariance drops sufficiently low that the parti-
cles no longer surround the saddle.

saddle.

Whichever resolution procedure is used, once the robot escapes the saddle

point GSPF continues easily around the north of the obstacle and then southwest

toward the goal. When the particles are in the goal region another stationary point

is identified. A new approximate Hessian is constructed, its positive eigenvalues

confirm that we have reached the target, and GSPF terminates.
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Figure 5.4: Navigating to a goal in the bottom right corner. In all cases,
actions are chosen at roughly 0.05m intervals. Top: Action chosen by
steepest descent on the expected state generates chattering. Middle:
Action chosen by SGD generates a more randomized, but still jagged
path. Bottom: Action chosen by GSPF generates a smoother path.
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Table 5.1: Average Angular Difference Between Successive Actions

Update Rate Expected State SGD GSPF
mean (variance) mean (variance) mean (variance)

0.01 m 16.6◦ (0.05) 16.0◦ (0.08) 2.37◦ (0.02)
0.05 m 16.6◦ (0.21) 22.6◦ (0.29) 0.54◦ (0.00)
0.1 m 15.2◦ (0.04) 23.5◦ (0.79) 0.39◦ (0.00)
0.2 m 23.3◦ (0.15) 29.4◦ (2.76) 0.01◦ (0.00)

5.2 Narrow Hallway
We illustrated that the basic gradient sampling algorithm can resolve the chattering

problem encountered when the value function is (nearly) non-differentiable in

figure 1.2. In this section we illustrate that the same chattering behaviour can arise

when using the default ROS approach of planning based on the expected state of the

MCL filter, and that the chattering cannot be resolved simply by randomly sampling

states.

The robot starts to the left of a narrow hallway, and must travel down the hallway

to its goal on the bottom right. The cost function is chosen to penalize states which

are too close to the walls, and the resulting value function displays a steep sided

valley through the narrow hallway. Figure 5.4 illustrates a single run for each of the

approaches. Choosing actions based on the expected state shows the same chattering

behaviour as the fixed stepsize approach in figure 1.2, while GSPF shows a relatively

smooth path.

We also include a comparison against actions chosen by Stochastic Gradient

Descent (SGD) [4]. One might hypothesize that by taking a random sample from the

state estimation, we might give all gradients equal contribution and offset opposing

gradients. However, this does not introduce consensus among drastically opposing

gradients; in fact, it can even exacerbate the problem by sampling from particles

very close to the wall. Our results in Table 5.1 corroborate this and emphasize the

need for consensus, not just equal contribution.

It is also possible that an improved path might be generated by adjusting the

stepsize. To test that hypothesis we ran simulations at a variety of update rates and
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measured the angle between successive action choices:

∑
i

∣∣∣∣arctan
(

y(ti)
x(ti)

)
− arctan

(
y(ti−1)

x(ti−1)

)∣∣∣∣,
where p∗(t) = [x(t),y(t)]T .

(5.1)

We refer to this as the Angle Metric. Only the portion of each trajectory in the

hallway was used (from x =−4.0 to x = 3.0). Results are shown in Table 5.1. The

large heading changes characteristic of chattering persist for the steepest descent

and SGD approaches over a wide range of update rates, while GSPF avoids the

problem even at fast update rates. We were able to observe chattering by GSPF if

we stringently limited the number of particles (around twenty or fewer), but such a

small number is not enough to localize reliably anyway.

5.3 Hallway Entrance
One of the convenient advantages of our technique is the ability to halt the robot in

the abscence of consensus. This often happens in situations where the robot is at risk

of collision if it proceeds without taking uncertainty into account. Take, for instance,

the situation illustrated in Figure 1.3. The mean state would command the robot

to proceed directly east to enter the hallway. However, many of the particles are

not centered on the entrance or are closer to the wall. If the true robot state is more

accurately represented by one of these outliers, then the command by expected state

will take it straight into collision. The robot would benefit from instead pausing and

attaining better localization before proceeding.

We reconstructed this scenario in a ROS/Gazebo simulation to measure the

potential safety improvements. The robot is initialized just outside the entrance

to a narrow hallway, with a state estimate sampled from a 2D Gaussian with

σxx = σyy = 0.1 meters. The correct direction for the robot to move is directly east,

but some particles would quickly be in collision if they were commanded to move

in that direction. From the knowledge available to the robot, no consensus can be

reached.

This kind of scenario was touched upon in Section 4.2.3. We are not near a

stationary point, and yet we are unable to reach consensus. Therefore GSPF will
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Figure 5.5: Navigating the entrance to a narrow hallway. Compare to fig-
ure 5.4. Not depicted is how many particles are in collision; we only
show the expected state here. Top: Action chosen by steepest descent
on the expected state generates chattering. Middle: Action chosen by
SGD generates an even less stable path. Bottom: Action chosen by GSPF

generates a smoother path.
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Table 5.2: Angular Change and Safety Metrics

Statistic Expected State SGD GSPF
mean (variance) mean (variance) mean (variance)

Angle Change 22.2◦ (0.3) 42.7◦ (3.7) 9.3◦ (2.1)
Probability of Collision 15.2% (37.4) 46.6% (530.0) 2.9% (3.8)
Mean Particle Cost 66.0 (0.4) 67.9 (3.6) 59.7 (1.2)

activate its high-fidelity sensor and attempt relocalization until consensus is reached.

We compare this to the alternative approaches using the expected state estimate.

Trials for all three methods are depicted in Figure 5.5.

Table 5.2 shows the comparison between our three different control schemes

on both the Angle Metric (Equation 5.1) and a new metric designed to measure

safety. The Probability of Collision Metric is given by the maximum of the fraction

of particles currently in collision at any time during a single trial:

max
i
(ci/K), (5.2)

where ci is the number of particles in collision at time i. We also report the mean

particle cost over the whole trial, which is a proxy to how “close” the particles are

to being in collision (a cost of 99 or 100 is in collision; a cost of 0 is ≥ 5.75 meters

from an obstacle; and costs 1–98 scale exponentially with their proximity to an

obstacle). All metrics are averaged over 10 trials. GSPF shows the best performance

on all three metrics.

This demonstrates the natural affect that GSPF has on safety without any ad-

ditional modifications. However, this is not a fair comparison to methods which

explicitly consider safety. For example, one way to mitigate the risk of the tradi-

tional method would be to simulate the motion of each particle before issuing the

command, and perform relocalization if this action would bring any particle into

collision. We could then compare this technique to our own relocalization technique

to see if they are comparable safety measures. We leave this as future work in

exploring the safety aspects of GSPF.
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5.4 Cluttered Scene
Here we examine a slightly more complex scene with several obstacles of different

shapes, as illustrated in figure 5.6. The function exhibits many saddle points (typi-

cally one near each separate obstacle) and ridges that represent decision surfaces.

Trials using action selection based on expected state and GSPF are shown in

figure 5.7. Eigenvector voting procedures were used to resolve all stationary points.

We observe several differences in the paths generated by the two algorithms. First,

GSPF does not make an immediate decision on which side of the first obstacle to

pass, and sometimes eventually chooses to pass to the west. Second, GSPF exhibits

a tendency to stay further away from obstacles. In both cases these behaviours

arise because GSPF takes into account the position (and hence optimal action) of all

particles.

The second behaviour can be considered an appropriate response to a potential

collision (if the true state turns out to be the particle which is near the obstacle). The

first, however, may generate paths which are worse than those which immediately

choose a route around the obstacle, even if the route turns out to be slightly subop-

timal for the true state. This behaviour occurs along ridges in the value function,

so a potential solution is to approximate the Hessian at every step and examine

its eigenvalues. The presence of a (sufficiently) negative eigenvalue indicates that

the particle filter is straddling a ridge in the value function (and is therefore likely

headed to a saddle point anyway), so we could immediately apply one of the saddle

point resolution approaches from section 4.2 to choose a better direction.

5.5 Other Planners: RRT*
We have so far assumed that actions are chosen based on the (approximated) value

function as discussed in section 3.2; however, there is no reason the gradient

sampling approach cannot be combined with other algorithms that generate action

choices. Any planner which can quickly evaluate action choices for a set of sample

states is suitable, although the stationary point procedures from section 4.2 construct

an approximate Hessian and so assume that actions are consistent with an underlying

(but potentially unknown) value function. In this final example we demonstrate the

use of GSPF with a multi-query version of the RRT*, a convergent optimal planner
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Figure 5.6: The cluttered scenario. Top: Costmap, with costs ranging from low
(blue) to high (yellow). Black indicates (inflated) obstacles. Obstacles
are inflated by the robot radius (0.2 m) to prevent collision. Costs extend
out to 6.0 m from the obstacles. Bottom: The value function for the
cluttered scene. The goal location is in the bottom left. Contours of the
value function and the resulting gradient vector field are shown.
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Figure 5.7: Navigation with value function planner through the cluttered scene.
The robot travels from the upper right to the lower left. Obstacles are
shown in black. Ten trials are shown in each case. Top: Action chosen
based on expected state. Bottom: Action chosen by GSPF.
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Figure 5.8: The result of running RRT* on the cluttered scene. Compare to
the vector field given by the value function in figure 5.6.

based on Rapidly Exploring Random Trees [15].

Figure 5.8 shows the result of generating an RRT* plan starting from the goal

state. This tree acts as our navigation function: at any state, it can return the

(approximately) optimal action from the RRT node which is the nearest neighbor to

that state (in this case it returns a 2D vector toward the goal, scaled to the maximum

speed of the robot). This experiment is performed on the same cluttered scenario as

the previous section. We start the robot with a slightly different initial state to force

it to start on the decision boundary for which way it should pass the first obstacle,

as this boundary is slightly different according to RRT*.

Figure 5.9 illustrates the performance of GSPF under this type of navigation

function. GSPF behaves very similar to the way it behaved with the value function.

The results are also very similar to the typical planning by expected state, but the

expected state approach had a hard time satisfying the RRT* termination criterion
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Figure 5.9: Navigation with RRT* planner through the cluttered scene. The
robot travels from the upper right to the lower left. Obstacles are shown
in black. Ten trials are shown in each case. Top: Action chosen based on
expected state. Bottom: Action chosen by GSPF.
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and hence tended to chatter around the goal location. GSPF’s termination criterion

naturally takes into account the distribution of the particles and hence it did not

suffer from this issue.
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Chapter 6

Conclusion

We observed that the gradient sampling algorithm from [8] can be used to resolve

the chattering problem commonly encountered when generating optimal paths from

value function approximations. We then proposed the GSPF algorithm, which uses

the particles as the gradient sample locations, thereby naturally and efficiently

generating consensus directions suitable for all particles or detecting that no such

consensus can be reached. When no consensus exists we use the eigenvalues of an

approximate Hessian to diagnose whether we have arrived at the goal or are stuck

on an undesirable stationary point; in the latter case two approaches were described

for finding a descent direction. The scheme was illustrated on three examples in the

ROS / Gazebo simulation environment. GSPF was also briefly demonstrated using an

RRT* planner instead of a value function approximation. Although not illustrated,

it is also straightforward to apply the gradient sampling approach to systems whose

state uncertainty is characterized by parametric representations, such as the Kalman

filter.

In the future we intend to further explore the use of GSPF with other planners

and its extension to anisotropic and non-holonomic dynamics. The use of a faster,

multi-query planner will bring us closer to robust operation in bustling hospital

settings. And the implementation atop a non-holonomic differential drive system

will constitute a crucial step toward our goal of developing a safe, comfortable

robotic wheelchair.
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